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SCIENCE FOR SOCIETY Droughts and heatwaves are becoming increasingly common. As their frequency
grows, so too do the chances of these events co-occurring (i.e., compound drought-heatwave [CDHW]
events), which exacerbates societal and environmental risk. Despite this growing concern and projections
indicating more severe events in the future, the likelihood that CDHWs will lead to loss of life and the factors
that heighten vulnerability remain poorly understood, compromising mitigation and adaptation strategies.
Our results demonstrate that increasing CDHW frequency, duration, and severity substantially elevate mor-
tality risk, but the primary causes of elevated risk are socio-demographic factors associated with population
aging. This work emphasizes the need for mitigation and adaptation actions that reduce the adverse impacts
of CDHWs on population health, particularly for the elderly.
SUMMARY
Droughts and heatwaves have far-reaching impacts on human health, and their compound effects are more
severe. However, our understanding of the impact of compound drought-heatwave (CDHW) onmortality risk,
which is a key input for policy prioritization to protect vulnerable populations, remains limited, particularly
considering socio-demographic factors such as baseline mortality reductions, population size changes,
and aging. Here, we project future changes in CDHW and associated mortality in China under three Shared
Socioeconomic Pathways (SSPs). Under the highest emission scenario (SSP5-8.5), CDHW exposures led to
11.88 (95% confidence interval [95%CI], 8.77–14.80) million premature deaths among Chinese individuals
aged 65 years and older by 2100. Notably, even under the least warming pathway (SSP1-2.6), deaths increase
due to the expanding size of vulnerable populations. Population aging and baseline mortality changes are
more influential in shaping future mortality risks than CDHW exposure levels. Our findings provide valuable
insights into understanding and planning for future risk.
INTRODUCTION

Droughts and heatwaves are two of the costliest climate-

related hazards, exerting profound effects on both human

society and ecosystems.1–3 These extreme events are driven

by complex interactions among physical processes and initi-

ated by similar synoptic circulation anomalies,4,5 and they often
All rights are reserved, including those
co-occur.6,7 As droughts occur more frequently and tempera-

ture warming triggers stronger land-atmosphere feedbacks,8

compound drought-heatwave (CDHW) events have increased

globally,9,10 including in Asia,11,12 Europe,13,14 North Amer-

ica,15 South America,16 and Oceania,17,18 amplifying adverse

impacts on socio-ecosystem sustainability and human

health.19,20
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Figure 1. CDHW influence on human health

Summary of the processes generating CDHWs and their human health impacts, including human physiological responses to CDHWs, drought-heatwave in-

teractions, and secondary disasters caused by CDHWs.
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The impacts of droughts or heatwaves on human health have

been widely reported. For example, droughts increase morbidity

and mortality,21–23 including mental illness due to economic los-

ses,24 heart and respiratory systemdiseases caused by dust and

wildfires,25 and waterborne infectious diseases.26,27 Heatwaves

also pose a major threat globally to human health by substan-

tially contributing to increased morbidity and mortality,28–30

especially for older populations with cardiopulmonary and other

chronic diseases.30–32 Concerningly, CDHWs may intensify

health hazards through intricate interactions, leading to greater

impacts than individual extremes. First, CDHWs amplify the hu-

manphysiological responses to heatwaves or droughts (Figure 1,

red boxes). For instance, in drought conditions, the human

heat-regulation physiologies increase cardiac workloads and

perspiration, resulting in greater strains on the heart and electro-

lyte imbalances,30 elevating the heat-related mortality rate.30,33

Second, drought-heatwave interactions can generate or amplify

compound extreme (Figure 1, yellow boxes), such as elevated

temperatures leading to increased evapotranspiration, thereby

intensifying drought. Third, CDHWs are more likely to trigger

various secondary disasters such as wildfires and famines (Fig-

ure 1, blue boxes), posing a severe threat to human health.34–36

Understanding CDHWdynamics is thus essential for implement-

ing the UN Sustainable Development Goals (SDGs), in particular

SDG3 and SDG13, which aim to improve healthy lives and com-

bat climate change. Previous studies have investigated the

CDHW characteristics using data from recent observational pe-

riods and simulations of future climate change scenarios.10,37,38

However, there is a lack of systematic assessment of the CDHW
2 One Earth 7, 1–15, November 15, 2024
impacts on human health, which is crucial for informing adapta-

tion and mitigation strategies.

Further, a range of factors canmodulate the impact of CDHWs

on human health, such as emission policies, energy transition,

and socio-demographic trends.39–41 For example, socio-demo-

graphic patterns can change the size and vulnerability of the

exposed populations, thereby exerting complex effects on

the health burdens of CDHWs. Meanwhile, improvements in

the healthcare system can reduce the baseline mortality rate,42

mitigating the health consequences of risk factors, including

those arising from CDHWs. However, less is known about the

roles of CDHWs and socio-demographic factors on human

health in the projected climate scenarios.

Given China’s complex natural and geographical conditions,

as well as its dynamic socio-demographic characteristics, it

serves as an ideal case for studying future changes in CDHWs

and their impact on mortality risk. During recent decades, there

has been a substantial increase in drought frequency, severity,

duration, and spatial extent across China,43,44 accompanied by

a significant rise in heatwaves.45,46 The inherent interplay of

climate and diverse geographical conditions makes China prone

to more frequent CDHWs.12,47,48 Meanwhile, it is now home to

the largest population of adults aged 60 years and older, ac-

counting for 25.6% of the entire global old population in

2020.49–51 Between 2006 and 2050, the number of Chinese citi-

zens older than 65 years is projected to triple due to declining

birth rates and longer life expectancies, reaching about 25% of

the total national population,52 which will aggravate the health

impacts of CDHWs.



Figure 2. Historical and projected changes in CDHW characteristics

(A–C) Variations in GCM-GHM-based MME mean projections of CDHW characteristics—(A) frequency, (B) duration, and (C) severity—spatially averaged over

China for historical (1941–1980), recent (1981–2014), and future periods (2015–2100) based on the selected future climate scenarios (SSP1-2.6, SSP3-7.0, and

SSP5-8.5). The asterisks indicate that the change is significant (*p < 0.05) as detected by Mann-Kendall trend tests. The shading represents the 95%CIs.

(legend continued on next page)
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Here, we employ an integrated framework to simulate future

human activities and emissions for each province in China, which

enables us to systematically evaluate changes in CDHW charac-

teristics under the historical (1941–1980), recent (1981–2014),

near-future (2015–2057), and far-future (2058–2100) climate sce-

narios and assess their impacts on mortality (Figure S1). We

further decompose the total mortality effects by examining the

contributions of four individual factors to identify primary drivers

that may vary across provinces and over time. By exploring the

spatiotemporal patterns and mortality impacts of CDHWs in

China, the presentedmodeling framework reveals the underlying

processes and dynamics that shape CDHW patterns and their

associated health burdens. Our research offers valuable infor-

mation on the relationship between anthropogenic warming,

climate extremes, and human health. This information is crucial

for advancing sustainable science to address the escalating

threat of climate change on human health in a warming world.

In the long-term future, the impacts of socio-demographic fac-

tors on the mortality risk of older adults are expected to become

increasingly significant.

RESULTS

Methods summary
Leveraging bias-corrected simulation outputs from five global

climate models (GCMs) and two global hydrological models

(GHMs) under the Coupled Model Intercomparison Project 6

(CMIP6), we calculate CDHW metrics for quantifying the

projected changes in CDHW characteristics in China under

various future scenarios (2015–2100) relative to the historical

(1941–1980) and recent observed (1981–2014) periods. We uti-

lize an integrated SSP-RCP scenario framework by combining

Shared Socioeconomic Pathways (SSPs) with Representative

Concentration Pathways (RCPs). RCPs provide climate projec-

tions without linking to societal pathways, while SSPs outline so-

cietal futures without considering climate impacts. By combining

them, we can better assess climate risks and devise adaptation

or mitigation strategies.53 Further, socio-demographic factors

and extreme climate events are interconnected, and SSPs

represent changes in factors such as economic growth and ur-

banization that influence future greenhouse gas emissions and

heat-related events. We select three commonly used sce-

narios54,55—SSP1-2.6 (sustainability), SSP3-7.0 (regional ri-

valry), and SSP5-8.5 (fossil-fueled development)—to explore

how socio-demographic factors impact compound extremes

under climate change. It is worth mentioning that the likelihood

of the SSP5-8.5 scenario may decrease in the future due to

global climate efforts, technological advancements, policy

changes, increased public awareness about global warming,

and more sustainable practices. However, examining this sce-

nario provides valuable insights into how varying levels of global

warming can affect mortality risk. Based on a cohort of older

adults aged 65 years and older from the Chinese Longitudinal

Healthy Longevity Survey (CLHLS) during 2002–2014, we
(D) Boxplots of coincidence rates in various scenario-period combinations. The

percentile values, the whiskers indicate the minimum/maximum values, and the

(E–G) Spatial patterns of relative changes in (E) frequency, (F) duration, and (G) sev

2100). The CDHWs in (A)–(G) are all identified based on the 92.5th percentile tempe
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employ the Cox proportional hazards model to estimate the haz-

ard ratio (HR) of the all-cause mortality of Chinese older adults’

exposures to different CDHWs and explore variations in their im-

pacts across age and sex subgroups. Finally, we quantify

the impacts on human health, measured by CDHW-related

deaths, using socio-demographic projections consistent with

SSPs56–58 and the CDHW-mortality relationships.

Historical, recent, and projected changes in CDHWs
We investigate the trends in the three types of climatic extreme

events (heatwave, drought, and CDHW) under different defini-

tions and their spatial patterns during 1941–2100 based on

the multi-model ensemble (MME) mean of 10 GCM-GHM

coupling models from the CMIP6 (see section ‘‘experimental

procedures’’). Note S2 presents the validations of the daily

maximum2-m air temperature (Tmax), dailymean 2-m air temper-

ature (Tmean), and daily precipitation (P) simulations from five

GCMs and the terrestrial water storage (TWS) simulations from

10 GCM-GHM coupling models as well as the results from the

MME mean.

Using the Mann-Kendall test, we identify statistically signifi-

cant trends in the CDHW time series (Figures S3–S5). Except

for some CDHW frequencies derived from TWS-based drought

severity index (TWS-DSI), which show no significant changes un-

der the SSP1-2.6 (Figure S3), all other CDHWs exhibit significant

increases in frequencies, duration, and severity across the three

SSP-RCP scenarios (Figures S3–S5). The frequency of CDHWs

identified using TWS-DSI is higher than those identified using

standardized precipitation index (SPI) and standardized precip-

itation-evapotranspiration index (SPEI) (Figure S3). This differ-

ence may be attributed to the fact that TWS represents vertically

integrated water storage, whereas these conventional indices

can only capture partial water storages or fluxes,59,60 thereby

rendering TWS-DSI more sensitive in identifying droughts.37

Notably, as the definitions of heatwaves for identifying CDHWs

become more stringent (with increased temperature and dura-

tion thresholds), the disparities in CDHW characteristics

across the three distinct scenarios become more pronounced

(Figures S3–S5). This underscores the importance of climate ac-

tions such as controlling greenhouse gas emissions in mitigating

more severe heatwaves.

For the optimal CDHW definition (with a 92.5th percentile tem-

perature threshold, 3-day duration threshold, and TWS-DSI as

the drought index; see section ‘‘experimental procedures’’) iden-

tified to capture the impact on mortality risk, all characteristics of

CDHWs increased during the period 1941–2014 (Figures 2A–

2C). CDHW frequency, duration, and severity substantially in-

crease in the future scenarios (Figures 2A–2C), except the

CDHW frequency under the SSP1-2.6 scenario (Figure 2A). Un-

der the SSP3-7.0 scenario, models project that the frequency of

CDHWs is likely to increase by 0.69 or 0.61 (95% confidence

interval [95%CI], 0.58–0.80, or 0.46–0.77) times/year, with a

rise in the CDHW duration by 4.20 or 1.50 (95%CI, 1.99–6.41,

or 1.01–1.99) days/time and severity of each CDHW event by
center line indicates the median value, the box bounds indicate the 25th/75th

circles indicate the outliers.

erity of CDHWs between two periods (recent, 1981–2014, and far-future, 2058–

rature threshold, 3-day duration threshold, and TWS-DSI as the drought index.



Figure 3. The results of Cox proportional hazards models

(A) HRs and 95%CIs for the association between all-cause mortality and CDHW exposures for the baseline model. Points and lines represent HR estimates and

their corresponding 95%CIs, respectively. Red indicates the primary explanatory variables, blue represents continuous control variables, and orange denotes

categorical control variables, with the reference group specified in parentheses after the variable name.

(B–D) Curve associations between all-cause mortality and 1-unit increase in (B) frequency, (C) duration, and (D) severity of CDHWs. The dashed lines indicate

95%CIs. The reference of frequency, duration, and severity is 0 (curve results from model 2).
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4.41 or 1.42 (95%CI, 1.91–6.91, or 0.96–1.89) by the end of far

future or near future compared to the year 2014. Compared to

the sustainability scenarios (SSP1-2.6), a statistically significant

increase in CDHW characteristics is projected for the fossil-fu-

eled development scenario (SSP5-8.5) followed by the regional

rivalry scenario (SSP3-7.0), which is consistent with recent

literature.38,61

The promotion in the CDHW frequency can be driven by two

main factors: (1) increases in the frequency of droughts or heat-

waves independently, and (2) increases in the likelihood of

droughts and heatwaves co-occurring. Almost of the character-

istics of heatwaves in China exhibit a substantial promotion in all

scenario-period combinations (Figures S9D–S9F), while the

drought characteristics remain relatively stable, except for an in-

crease under the SSP5-8.5 scenario (Figures S9A–S9C). We also

calculate the coincidence rate to represent the likelihood of

droughts and heatwaves co-occurring as the ratio of the total

number of CDHWs to the heatwave events per year at any given

location (section ‘‘experimental procedures’’). The coincidence

rate in different scenario-period combinations shows slight var-

iations (Figures 2D and S10), suggesting that the intensified

CDHWs in China are primarily driven by the intensification of

heatwaves.

We quantify the spatial risk of climatic extremes under climate

change, which is valuable for developing adaptation strategies.38
Compared to the historical period, 8.71%–18.79% of the regions

in China have experienced over double frequency, duration, and

severity of CDHWs in recent decades (Figures S11A–S11C). Un-

der the SSP5-8.5 scenario, by the end of this century, we project

that 35.22%, 85.52%, and 92.99%of the regions in China will wit-

ness over double increases in CDHW frequency, duration, and

severity compared to the recent period (Figures 2E–2G). Although

there are variations in the spatial patterns of CDHW characteris-

tics under different definitions (Figures S6–S8), the most

significant increases in CDHW characteristics are observed in

southwestern China and northern Xinjiang (Figures 2E–2G and

S6–S8), underscoring the regional inequalities of potential health

impacts. The promotions in other scenario-period combinations

are slightly lower but are still larger compared to the recent

CDHW characteristics (Figures S11–S13).

Exposure-mortality associations
We use the Cox proportional hazards model62,63 to quantify the

association between exposures to CDHW characteristics and

all-cause mortality of older adults (Equation 4 in section ‘‘exper-

imental procedures’’). As shown in Figure 3A and Table S7, we

note that exposures to CDHWs significantly elevate mortality

risk of older adults. For older adults exposed to each additional

CDHW in the year preceding their survey dates, mortality risk in-

creases by 5.4% (95%CI, 4.5%–6.3%). Similarly, for each
One Earth 7, 1–15, November 15, 2024 5
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additional day of the CDHW duration in the year before their sur-

vey date, there is a 1.2% increase (95%CI, 1.0%–1.4%) in mor-

tality risk of older adults. Furthermore, for every unit increase in

the CDHW severity experienced by older adults in the year

before their survey date, there is a 1.3% increase (95%CI,

0.9%–1.3%) in mortality risk.

Figure S14 and Table S9 show the robustness tests using

seven models (section ‘‘experimental procedures’’). These tests

highlight that the effects of the three CDHW characteristics

remain significant and remarkably stable. To assess the potential

nonlinear relationship between different CDHW characteristics

and all-cause mortality risk, we individually fitted penalized

splines with three knots for CDHW frequency, duration, and

severity (model 2). The HR curves for CDHW frequency and

duration both exhibit a saturation phenomenon (Figures 3B

and 3C), wherein the slope of the curve decreases when the fre-

quency exceeds three occurrences (Figure 3B). The saturation

phenomenon is more pronounced for CDHW duration, as the ef-

fects level off when the duration exceeds 11 days (Figure 3C).We

observe steeper slopes in the HR curve when the CDHWseverity

exceeds 12 (Figure 3D). We also conduct analyses stratified by

age (strata variable by 5 years) and sex. In these analyses,

except for the effects of CDHW duration and severity, which

are modulated by sex (Figure S15; column 2–3 in Table S11),

the impacts of a 1-unit increase in the three CDHW characteris-

tics experienced by older adults in the year before the survey

does not differ by age and sex (Tables S10 andS11). Specifically,

whenCDHWduration (severity) increases by 1 unit, the HR for fe-

males is 1.016 (1.018), slightly higher than that for males (1.009;

Figures S9A and S9C).

CDHW-related deaths
Using the exposure-mortality function in model 2 and socio-de-

mographic projections consistent with SSPs,56–58 we estimated

the total burden of all-causemortality of the exposed older adults

in China under different scenarios. The CDHW-related all-cause

deaths are projected to be higher in 2050 and 2100 compared to

2014 across all scenarios (Figure 4). In 2050, CDHW-related

deaths in the scenario with highest mortality burden are 1.4 times

that of the lowest scenario (Figure 4A), while, in 2100, CDHW-

related deaths in the highest scenario are 2.4 times those of

the lowest scenario (Figure 4E). The lowest burden is found in

SSP1-2.6 (the most sustainable scenario) and the central esti-

mate based on the exposure-mortality function is 8.62 (95%CI,

6.68–10.53) million in 2050, while it is 4.95 (95%CI, 3.80–6.08)

million by the year 2100. The highest burden is found in the

SSP5-8.5 scenario where fossil fuels continue to be used; that

is, 12.39 (95%CI, 9.50–15.19) million in the year 2050 and

11.88 (95%CI, 8.77–14.80) million in the year 2100. Therefore,

the health damage from CDHWs is expected to be substantial

in the coming decades and can exacerbate rapidly under

some plausible future scenarios.

Interestingly, the CDHW-related health burden does not in-

crease monotonically with warming levels. For instance, the sce-
Figure 4. CDHW-related all-cause deaths in China across different sce

(A–H) All-cause deaths related to CDHWs and their characteristics in three SSP-RC

results using the central estimates of the HR functions from model 2, and the er

functions. Different colors represent different provinces.
nario with the lowest warming level (SSP1-2.6) is associated with

higher deaths related to the frequency of CDHWs than that with

the higher warming level (SSP3-7.0, Figure 4B). This suggests

that other factorsmaymoderate theCDHW-related health burden.

We observe from Figures 4A–4H that the future spatial distri-

butions of CDHW-related health burdens remain unequal. The

three SSP-RCP scenarios reveal that approximately 40% of na-

tional CDHW-related deaths only occur in six provinces: Yunnan,

Sichuan, Henan, Guangdong, Shandong, and Jiangsu. Although

the increases in CDHW characteristics in Jiangsu and Shandong

(the eastern provinces of China) do not stand out prominently

across all scenarios (Figures 2E, 2F, and S11–S13), the large

size of the population exposures to CDHWs and the increasing

population vulnerability due to population aging make the future

health burden considerable. Thus, inequalities in CDHW-related

health might persist in the future as the nation grapples with in-

terconnected challenges associated with economic, demo-

graphic, and energy-demand growth.

The determining role of socio-demographic factors
To explain the variations in health burdens across regions and

scenarios, we decompose the aggregate changes in CDHW-

related deaths in 2050 and 2100 relative to 2014 into the effects

of four individual factors. The first factor is the change in the

exposure level as a result of energy, air pollution, and climate ef-

forts. We then consider three socio-demographic factors that

affect the size of the exposed population and their vulnerability:

population size, population aging, and changes in the baseline

mortality rate.

We find that the socio-demographic factors play a dominant

role in shaping the future health burden related to CDHWs

(Figures 5A–5H). The impact of CDHW exposures is relatively

low inmost regions and scenarios. In particular, population aging

would substantially exacerbate the future health burden. In all

three scenarios, it is projected that, by 2050, aging alone will

lead to an increase in national CDHW-related deaths by 221%,

132%, and 265%, respectively (Figure 5A). This is because

the older adult groups have a higher baseline mortality rate

compared to the younger population groups and the former is

more vulnerable tomortality risk.64On theother hand, for the sce-

narios that assume rapid economic growth and improved health-

care (suchasSSP1-2.6 andSSP5-8.5), thebaselinemortality rate

is projected to decline for each specific age group (Table S13),

which lowers all-cause deaths from CDHW exposures. For

instance, in 2050, the declining baseline mortality rate is ex-

pected to reduce the national CDHW-related deaths by 134%

and 169% under both SSP1-2.6 and SSP5-8.5 (Figure 5A).

Comparing the decomposition results between the mid-cen-

tury (2050) and the end of the century (2100), we find that the

contribution of changes in CDHW exposures becomes more

prominent and varies considerably across different scenarios.

In the sustainable-development scenario (SSP1-2.6), the

changes in CDHW exposures lead to a 10% increase in national

CDHW-related deaths by 2100, while there are 100% and 314%
narios

P scenarios in (A–D) 2050 and (E–H) 2100 are projected. The bars represent the

ror bars represent the deaths estimated on the basis of the 95%CI of the HR
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Figure 5. Factors driving changes and uncertainty sources in CDHW-related deaths

(A–H) Combining the effects of these four factors (i.e., CDHW characteristics, baseline mortality, population aging, and population size), the white dots represent

the net changes in CDHW-related deaths for selected provinces at different gross domestic product (GDP) levels in 2050 and 2100.

(I and J) The sources of uncertainties in CDHW-related deaths in 2050 and 2100. Different provinces are arranged in descending order of GDP.
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increases (Figure 5E) in the other two scenarios, underscoring

the importance of climate-mitigation efforts.

The contributions of the socio-demographic factors to mortal-

ity risk vary with the levels of gross domestic product (GDP)

(Figures 5B–5D and 5F–5H). In the provinces with higher GDP,

such as Guangdong, population aging is more severe. The

increasing elderly population in these provinces leads to a sub-

stantial rise in CDHW-related deaths (Figures 5B and 5F). How-

ever, in the provinces with medium and lower GDP, such as

Yunnan and Gansu, where the size of the populations is smaller,

the impact of CDHW exposure changes is proportionately higher

(Figures 5C, 5D, 5G, and 5H). These disparities further exacer-

bate regional inequalities in CDHW-related deaths.

Last, we decompose the overall uncertainty of projections

based on CMIP6, exposure-mortality associations, and SSPs

into five different sources (Figures 5I and 5J). In 2050, the largest

source of uncertainty in CDHW-related death projections nation-

wide is the variability between different GCM-GHM coupling

models, accounting for 23.68% (Figure 5I). By 2100, the uncer-

tainty in socio-demographic projections consistent with SSPs in-

creases, with population and baseline mortality rate projections

contributing 26.51% and 27.09% of the uncertainty in CDHW-

related deaths, respectively (Figure 5J). Moreover, the uncer-

tainty contribution ratios vary across different provinces, due

to the different SSPs and GCM-GHM coupling models (Figures

5I and 5J).

DISCUSSION

Anthropogenic warming has led to more frequent simultaneous

occurrences of droughts and heatwaves, resulting in a rise in

CDHW events. These events have a significant impact on human

health and socioeconomic development. Previous studies have

primarily focused on the spatiotemporal changes in CDHWchar-

acteristics under different SSP-RCP scenarios.10,37,38 However,

our understanding of the relationship between CDHW events

and mortality is still limited, especially when considering addi-

tional socio-demographic factors alongside CDHW events.

Leveraging the GCM-GHM coupling models and CLHLS data

from 2002 to 2014, we reveal that the increasing frequency,

duration, and severity of CDHWs are associated with an

increased all-cause mortality risk of older adults. Under the three

climate warming scenarios, we project increasing trends in

CDHWs in China, underscoring the profound threat posed by

more frequent and intense CDHWs in the coming decades.

The mortality risk from CDHWs depends not only on the de-

gree of climate warming but also on the vulnerability of popula-

tions.65 We show that older women experienced a higher HR

compared to older men due to increased duration and severity

of CDHWs. The surveyed older adults were born in the socioeco-

nomically challenging times of 1920s–1940s (Table S3). Their in-

fancy, childhood, and adolescence experienced food shortages

that might worsen their late-life health. Women’s nutrition was

usually worse than that of their male counterparts during the pe-

riods of food scarcity.66 This might induce a higher CDHW-

related mortality risk for older women than older men.

By comparing the three future scenarios with different socio-

economic pathways, greenhouse gas emission-control efforts,

or climate mitigation, we observe CDHW-related deaths nation-
wide in the scenario with the highest mortality burden are 2.4

times those of the lowest scenario in the year 2100. This differ-

ence is mainly attributed to the varying levels of population aging

and baseline mortality rates across different regions, periods,

and scenarios. The net impacts of these socio-demographic fac-

tors often lead to an increase in future CDHW-related deaths.

From the mid-century to the end of this century, CDHW-related

deaths will continue to rise. This implies that great efforts to con-

trol greenhouse gas emissions are crucial to counteract the ef-

fects of socio-demographic trends, such as aging that may

make future populations more vulnerable to CDHWs.

In addition to changes in population size, population aging,

and baseline mortality rates, other socio-demographic factors,

such as marital status, household income, and education, might

also affect themortality risk, thereby further influencing the death

burden associated with CDHWs. For instance, increased income

and extended years of education can effectively reduce the mor-

tality risk among older adults (Figure 3A). This is likely because

affluent or well-educated households have better living condi-

tions, such as access to air conditioning; staying hydrated;

cool roof materials; and cleaner, safer drinking water.67–69 These

insights provide new directions for the formulation of policies to

minimize the impact of climate extremes on human health.

Notably, the regional inequalities in CDHW-related health

burdens will be widened in the future. Slower economic growth

may delay the efforts to strengthen greenhouse gas control

policies, leading to higher warming levels.70,71 It may also result

in a slower improvement in the baseline mortality rates,41 exac-

erbating the health burden of the population exposure to

CDHWs. Therefore, the development of underdeveloped regions

should remain a priority to reduce inequalities in health, sanita-

tion, and the economy.

This study has several limitations. First, our results may under-

estimate the potential for the enhanced durations of CDHWs,

because the current generation climate models fail to accurately

reproduce the planetary wave resonance conditions that have

been implicated in the increase of persistent summer weather

extremes.72–74 Second, due to the lack of age-structured projec-

tion data at the grid scale, we downscale the IIASA SSP popula-

tion data56 to the grid level41 using the NASA SEDAC gridded

global population projections,57 which may weaken the repre-

sentation of the regional health burden inequalities. Third,

SSP2-4.5 is considered a more plausible trajectory for China.

However, due to the lack of TWS projection fromGCM-GHM un-

der the SSP2.4-5 in the current ISIMIP2b/3b framework, future

work can be devoted to exploring the CDHW evolution under

this scenario. Nevertheless, our findings provide evidence that

the risks associated with future CDHWs are expected to signifi-

cantly intensify, posing a severe threat to human health under the

influence of socio-demographic factors. We call for stark adap-

tation actions to mitigate the adverse impacts of climate warm-

ing on health and alleviate the growing pressures on global sus-

tainability, particularly in underdeveloped regions.
EXPERIMENTAL PROCEDURES

SSP-RCP scenarios

Based on the projections on energy use, land use, and emissions of air pol-

lutants and greenhouse gases, the SSP-RCP scenario framework pioneers
One Earth 7, 1–15, November 15, 2024 9
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a process for developing scenarios with various socioeconomic narratives

and global warming levels. The SSPs include different narratives of future

trends in socioeconomic drivers and environmental actions. The RCPs

consider different targets for end-of-century climate-forcing levels to

represent varying levels of climate-mitigation efforts. As such, the SSP-

RCP integrated-scenario architecture captures the central features of

global socioeconomic trends, greenhouse gas emission-control efforts,

and climate policies through the end of the century. This study selects

three scenarios that cover a range of SSPs and RCPs: the sustainability

scenario (SSP1-2.6), the regional rivalry scenario (SSP3-7.0), and the fos-

sil-fueled development scenario (SSP5-8.5) (please see Note S1 for more

details).
Models, simulation settings, and forcing data

The large ensemble simulations include 30 scenario-model combinations from

CMIP6. The CMIP6-based projections contain three SSP-RCP scenarios (i.e.,

SSP1-2.6, SSP3-7.0, and SSP5-8.5), five GCMs, and two GHMs. The five

GCMs include Geophysical Fluid Dynamics Laboratory earth system model

version 4 (GFDL-ESM4), Institut Pierre-Simon Laplace climate model version

6A-low resolution (IPSL-CM6A-LR), Max Planck Institute earth system model

version 1.2-high resolution (MPI-ESM1-2-HR), Meteorological Research Insti-

tute earth systemmodel version 2.0 (MRI-ESM2-0), and United Kingdom earth

system model version 1.0-low vertical resolution-low horizontal resolution

(UKESM1-0-LL). The two GHMs include Community Water Model (CWatM)

and global hydrological model H08. All models simulate the key terrestrial hy-

drological (e.g., soil, vegetation and river) processes (please see the details in

Table S2), which are forced by the Inter-Sectoral Impact Model Intercompar-

ison Project 3b (ISIMIP3b) daily meteorological forcing data61 from five GCMs

under CMIP6 (Table S1). For each GCM, we utilize bias-corrected outputs of

daily maximum 2-m air temperature (Tmax) to identify and calculate heatwave

characteristics, daily mean 2-m air temperature (Tmean), and daily precipitation

(P) to compute the SPI and the SPEI. Additionally, we use TWS from 10 GCM-

GHM coupling models to obtain TWS-DSI. All simulations cover both the his-

torical period (1941–2014) and future projections (2015–2100), which are con-

ducted at a spatial resolution of 0.5� 3 0.5�. We derive the MME mean using

two ways. The first way involves taking the simple arithmetic average of the re-

sults from the 10 GCM-GHM coupling models. The second way involves using

Pearson correlation coefficients between each GCM-GHM coupling model

and the validation data as weights to calculate a weighted average. All

subsequent statistical analyses in our study are based on the weighted

average MME.
Validation of the GCM-GHM simulations

TWS anomalies from Gravity Recovery and Climate Experiment (GRACE)

satellite measurements are employed to validate TWS simulations from

GCM-GHM coupling models for the 2002–2014 period. We use the latest

monthly land-mass grids products from the Jet Propulsion Laboratory of

the California Institute of Technology.75 The monthly land-mass grids contain

water-mass anomalies given as equivalent water thickness derived from

GRACE time-variable gravity observations during the specified time span

and relative to the specified time-mean reference period (2004–2009). The

TWS anomalies data have a spatial resolution of 1� 3 1�, and the TWS simu-

lation results from GCM-GHM coupling models are bilinearly interpolated to

a spatial resolution of 1� 3 1� for matching the TWS anomalies data during

the validation.

To validate the simulated Tmax, Tmean, and P simulations from GCMs, we

collected climate station data from the National Climatic Data Center

(NCDC) for the years 1942–2014. The NCDC is a division of the National

Oceanic and Atmospheric Administration (NOAA) in the United States,

responsible for collecting, storing, analyzing, and disseminating global

meteorological, climatic, and environmental data. The NCDC meteorolog-

ical data include information such as temperature, precipitation, wind

speed, and wind direction from various locations worldwide. We utilized

3-h temperature and precipitation data for Chinese regions and calculated

Tmax, Tmean, and P. These data were then used to validate the simulations

by matching them with GCM outputs at the grid cells corresponding to the

station locations.
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Relative humidity and air pollutant data

To strengthen the precise identification of the association between CDHWand

mortality risk, we calculate atmospheric relative humidity and collect air

pollutant data as additional control variables. The relative humidity is esti-

mated based on daily maximum temperature and daily mean dew point tem-

perature by using the Magnus approximation.76

RH =

exp

�
17:6253Td

243:04+Td

�

exp

�
17:6253Tmax

243:04+Tmax

�3 100 (Equation 1)

where Td and Tmax represent daily mean dew point temperature and daily

maximum temperature in �C. These temperature data are from the European

Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5).77 The

ERA5 combines satellite and in situ observations with state-of-the-art assim-

ilation and modeling techniques to provide estimates of climate variables

with global coverage and one-hourly and 0.25� 3 0.25� resolution. In addition,

we collect PM1, PM2.5, PM10, and ozone data from the ChinaHighAirPollutants

(CHAP) dataset,78 with a spatial resolution of 1 km and a temporal resolution

of 1 day.

Older population data

Our survey samples are obtained from the CLHLS, which is a prospective, lon-

gitudinal and population-based study of older adults in China. The survey

began in 1998 and has been conducted every 2–3 years. It covers half of the

cities and counties across 23 provinces (including provincial-level municipal-

ities and autonomous regions) in China. These counties account for approxi-

mately 85% of the national total population. The CLHLS in 1998 and 2000 pri-

marily focused on elderly individuals aged 80 years and above, while the

surveys included the population aged 65 years and above from 2002 to

2020 in China. The CLHLSwas approved by the Biomedical Ethics Committee,

Peking University, Beijing, China (IRB00001052-13074). Written informed con-

sent was obtained from all participants.

From the CLHLS for the years 2002–2014, we select 35,085 respondents

from 944 county-level administrative units. Among these respondents,

20,536 (58.53%) are male and 14,549 (41.47%) are female, 1,659 older adults

participated in five waves (471 of whom died), 1,948 older adults participated

in four waves (984 of whom died), 4,595 participated in three waves (2,407 of

whom died), 8,212 participated in two waves (5,243 of whomdied), and 18,671

participated in one wave (12,233 of whom died).

Each older adult is matched with CDHW characteristics, atmospheric rela-

tive humidity, and air pollutant data in the county where he/she lives from 1

year before the survey date. This involves separately recording the number

of CDHWs, duration and average severity of each CDHW, average relative hu-

midity, average PM1 concentration, average PM2.5 concentration, average

PM10 concentration, and average ozone concentration experienced by each

older adult in the year prior to the survey date. These data at the county level

are obtained by aggregating the grid-scale data into counties and weighted

according to the areas of their boundaries. When the county’s area is smaller

than that of a single grid, the data in it are derived from the grid where it is

located. For some older adults, we reassign their counties due to factors

such as the county boundaries change (Note S3), and also collect their socio-

economic status, health, education, diseases, and their families (Note S4 and

Table S3). Finally, we construct a panel dataset of 35,085 respondents with a

follow-up period of 13 years, resulting in 64,967 follow-up records and 21,338

death records.

Drought identification and characteristics

We use three different drought indices in this study: (1) TWS-DSI to identify

terrestrial water storage deficits,59 (2) SPI to identify precipitation deficits,79

and (3) SPEI to capture the combined effects of precipitation and evaporative

demand on regional water availability.80 Our analysis uses SPI and SPEI values

calculated at 6-month timescales, given their ability to capture seasonal tome-

dium-term trends in drought conditions.81,82 Similar to previous study, we

define drought as any period characterized by contiguous periods where

TWS-DSI is less than �0.837 or SPI/SPEI is less than �1.64 (i.e., fifth percen-

tile).81 If a given month is under drought, all days during that month are
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considered to be under drought. The severity of drought is taken as the

average absolute value of TWS-DSI/SPI/SPEI indices during the days under

drought. Further details on calculating drought indices are provided in the

Note S5.

Droughts are characterized by the following three metrics: (1) frequency,

defined as the total number of drought events in a given year; (2) duration,

defined as the average number of days for each drought event in a given

year; and (3) severity, defined as the average absolute value of the TWS-

DSI/SPI/SPEI of each drought event in a given year.

CDHW identification and characteristics

Heatwave definitions in the literature vary globally.15,32,37,83 Generally, a heat-

wave is defined as consecutive days with daily temperature measures

exceeding specific thresholds, including absolute and relative thresholds. To

determine which heatwave definition is the best to capture the health impact

of CDHWs, we generate 15 heatwave definitions by combining five relative

thresholds (Tmax exceeded 90.0th, 92.5th, 95th, 97.5th, and 99th percentiles

of the reference period 1941�2014) with three durations of R2, R3, and

R4 days. Considering the possible epidemiological significance,37,84 two suc-

cessive heatwave events are independent if they are at least 2 days apart.

Otherwise, they are clustered into a single event. We also assess the heatwave

characteristics using the following three metrics: (1) frequency, defined as the

total number of heatwave events in a given year; (2) duration, defined as the

average days of each heatwave event in a given year; and (3) severity (HWs),

where HWs is estimated by summing the daily Tmax anomalies:

HWs =
Xd = D

d = 1

�
Tmax;d � T25p

T75p � T25p

�
;DR 2 = 3 = 4 (Equation 2)

whereD denotes the duration of a heatwave event, Tmax;d is the daily maximum

temperature at day d in this event, and T25p and T75p are the 25th and 75th per-

centiles of Tmax over the study period.

A CDHW event is identified as a heatwave and a drought event occurring

simultaneously.10,37,38 By combining 15 heatwave definitions with three

drought indices, we obtain 45 CDHW definitions. CDHW characteristics are

also assessed using the following three metrics: (1) frequency, defined as

the total number of CDHWs in a given year; (2) duration, defined as the average

days of each CDHW event in a given year; and (3) severity (CDHWs), where

CDHWs is estimated as the product of the daily standardized values of Tmax

and the absolute value of daily TWS-DSI/SPI/SPEI (the value is determined

to be the same as the monthly TWS-DSI/SPI/SPEI for each month) in the

CDHW event. The severity for a CDHW (CDHWs) is thus given as:

CDHWs =
Xd = CDHWD

d = 1

�
ð � 1 3 TWS � DSId =SPId =SPEIdÞ

3

�
Tmax:d � T25p

T75p � T25p

��
;CDHWD R 2 = 3 = 4 (Equation 3)

where CDHWD represents the duration of the coinciding days, and TWS�
DSId=SPId=SPEId is the TWS-DSI/SPI/SPEI value at day d, which is consistent

at a monthly scale. Then, theCDHWs for a given year is the average severity of

all CDHWswithin the year. We also calculate the coincidence rate to represent

the likelihood of droughts and heatwaves co-occurring as the ratio of the total

number of CDHWs and heatwave events for a given year at any given location.

Cox proportional hazards model

Participants were followed from study enrollment until the first occurrence of

the following events: lost contact, death, or the last date at which follow-up

was considered complete (December 31, 2014). The deaths of older adults

are considered censoring events. The Cox proportional hazards model is em-

ployed to estimate HRs and 95%CIs for the associations between CDHW ex-

posures and mortality risk of older adults. To check for the co-linearity, we

calculate the variance inflation factor (VIF) for each variable using the 45

CDHW definitions (Table S4) and select the optimal definition for capturing

the impact of CDHW onmortality risk by computing the Akaike information cri-

terion (AIC) and Bayesian information criterion (BIC) for different models
(Table S5). We find that the optimal CDHW definition, consistent with previous

research,37,83 involves defining heatwave as a consecutive period of at least

3 days with Tmax exceeding the 92.5th percentile of the reference period, along

with using TWS-DSI as the drought index (Table S5). We further find that the

variations in the three characteristics of CDHWs have largely independent

and varying effects on the mortality risk of older adults (Tables S6 and S7).

Therefore, we incorporate the three characteristics into the model to investi-

gate how variations in these CDHW characteristics, experienced by elderly in-

dividuals, affect mortality risk:

lnðMtÞ = a1CDHWf + a2CDHWd + a3CDHWs + bX + lnðg0ðtÞÞ+ εt

(Equation 4)

where Mt represents the mortality risk of older adults at time t; g0ðtÞ represents
the baseline mortality risk of older adults at time t; CDHWf/d/s is CDHW fre-

quency, duration, and severity, respectively; X represents the control variable;,

a and b are regression coefficients; and ε is the error term.

We use age (strata variable by 1 year), sex, smoking status, drinking status,

physical activity, body-mass index, household income, marital status, educa-

tion, relative humidity, and air pollutant as the control variables in the baseline

model. Due to the high co-linearity among the concentrations of PM1, PM2.5,

and PM10 (Table S4), we opt to include PM2.5 in the baseline model. We test

the proportional hazards assumption using the Schoenfeld residual test and

do not find evidence of a violation (Table S8).

All statistical tests are two-sided with p < 0.05 considered to be statistically

significant. Analyses are conducted using the Stata statistical software,

version 16.0.

Robustness tests

We conduct seven robustness tests regarding the effects of frequency, dura-

tion, and severity of CDHWs by adjusting the regression samples (models 3–4)

and incorporating various variables into the baseline model (models 5–9).

These tests include (1) excluding the samples of older adults in Guangxi prov-

ince, where the highest number of deaths occurs (model 3); (2) excluding older

adults from the year with the highest mortality rate in 2006 (model 4); (3)

including urban-rural residence as an additional control variable (model 5);

(4) including the counties where the older adults are located as the additional

control variable (model 6); (5) including urban-rural residence and counties of

the older adults as the additional control variables (model 7); (6) including dis-

eases of the older adults as the additional control variable (model 8); and (7)

only controlling for age and sex (model 9). A detailed description of the control

variables is found in Note S4.

CDHW-related health burdens

For each 5-year age group from age 65 to 99 years, we calculate the number of

deaths attributable (AN) to CDHWs in 34 provinces of China.We consider three

characteristics that have been found to be associated with mortality risk: fre-

quency, duration, and severity. Our analyses are all conducted at the grid scale

and then aggregated to the provincial scale.

For each 0.5� 3 0.5� grid cell, age group and CDHW characteristics as well

as the all-cause deaths associated with CDHW exposure are calculated

through Equation 5.

ANi;t =
X99
a = 65

Pi;t 3Agei;t;a 3 y0i;t;a 3AFi;t (Equation 5)

where y0i;t;a is the age-specific baseline mortality rate for the exposed popula-

tion in the grid cell i at time t, a is the age group at 5-year intervals from 65 to 99

years (that is, 65–69, 70–74,., 95–99 years), andAF is the attributable fraction

and is the size of the exposed population in the grid cell i at time t. In particular,

AF is calculated by AF = (HR � 1)/HR. HR is the HR attributable to CDHW ex-

posures. Belowwe describe the data source andmethods for each parameter.

Population and age

Based on the population and economic projections from the integrated assess-

ment models, we obtain the age-specific population projections from two data-

sets. For total population and age structures, we use the projections from the In-

ternational Institute for Applied Systems Analysis (IIASA) SSP population

dataset,56 which include projections from 2010 to 2100 (with 5-year intervals)
One Earth 7, 1–15, November 15, 2024 11
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for each 5-year age group. Similar to the previous study,41 to match the spatial

resolution of the CDHW characteristics simulation, we downscale population

to the grid level using the NASA Socioeconomic Data and Applications Center

(SEDAC) gridded global population projections from 2010 to 2100 with 10-year

intervals and a 0.5� resolution.57

y0

For the year of 2014 and future periods for each SSP, we use the age-specific

baseline mortality rates projected by the International Futures (IFs) model

v7.89.59 The baseline mortality rates from IFs are projected on the basis of pri-

mary drivers such as income, education, and technological advancement, com-

binedwith a rangeof other social and behavioral factors. To cross-check the val-

idity of the projected baseline mortality rates, we check the 2017–2019 baseline

mortality rates from IFs against the rates reported by the Global Burden of Dis-

ease (GBD) studies,85 and find that they are comparable (Table S12).

AF

We use the exposure-mortality functions obtained from model 2 and the MME

mean of the GCM-GHM coupling models to estimate HR and AF for each grid

cell in a given year under different scenarios. There are differences in response

to CDHW duration and severity by sex, while other HRs do not show differ-

ences based on sex and 5-year age groups.

Decomposition analysis

For each 0.5� 3 0.5� grid cell, we compute the percentage contribution of the

following four individual factors to future changes in CDHW-related deaths us-

ing the decomposition method86: (1) effect of the population size, (2) effect of

the change in age structure (i.e., population aging), (3) effect of the changes

in CDHW exposures, and (4) effect of the mortality rates independent of expo-

sure to CDHWs (i.e., the change in the baseline mortality rate due to the

changes in access to healthcare, treatment, and other risk factors). We esti-

mate the contribution of different factors by sequentially introducing each fac-

tor into the AN equation. The differences between each consecutive step pro-

vide an estimate of the relative contribution of each factor.We then estimate the

results under all sequence permutations of the four factors (i.e., 24 combina-

tions). The final estimation of the contributions from different factors is the

average of the results for all sequences. Further details are provided inNote S6.

Uncertainty assessment

Estimation of the mortality burden under climate change involves numerous

uncertainties deriving from the complex interactions among SSP-RCP sce-

narios, climate models and scenarios, projection of the baseline mortality

rate, and uncertainty in estimated future CDHW-mortality associations. We

consider the differences in population and baseline mortality rates under the

three SSP scenarios. Other sources of uncertainties in attributable deaths

are related to CIs for CHDW-mortality relationships, differences in climate

model predictions under the three SSP-RCP scenarios, and variabilities in

CDHW predictions of 10 GCM-GHM coupling models in specific SSP-RCP

scenarios. The sources of uncertainties at different time points are analyzed

using a method similar to the decomposition of the driving factors.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will

be fulfilled by the lead contact, Prof. Liqiang Zhang (zhanglq@bnu.edu.cn).

Materials availability

This study did not generate new unique materials.

Data and code availability

The CMIP6-based simulations are freely available from the ISIMIP project por-

tal (https://data.isimip.org/search/tree/ISIMIP3b). The GRACE products are

available from https://grace.jpl.nasa.gov/data/get-data/. The ERA5 reanalysis

data are from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-

datasets/era5. The climate station data are from https://www.ncei.noaa.

gov/. The ChinaHighAirPollutants data are from https://weijing-rs.github.io/

product.html. The CLHLS data are available upon reasonable request through

the public website dedicated to the CLHLS dataset. The following link provides

the application process to help get access to the data: https://opendata.pku.
12 One Earth 7, 1–15, November 15, 2024
edu.cn/dataverse/CHADS. All code for this study has been deposited at

https://doi.org/10.5281/zenodo.12731062.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China

under grants 41925006, 42293272, and 72104240. We sincerely thank Prof.

Cascade Tuholske for his suggestions.

AUTHOR CONTRIBUTIONS

Conceptualization, X.Y. and Liqiang Zhang; methodology, X.Y., Y.Q., J. Yin,

Lei Zhang, J.L., and Q.Y.; investigation, C.B., M.L., Lei Zhang, and P.L.; visu-

alization, X.Y.; supervision, Liqiang Zhang, A.K.M., R.D., J. Yang, S.L., C.Z.,

and P.L.; writing – original draft, X.Y., Liqiang Zhang, andQ.W.; writing – review

and editing, X.Y., Liqiang Zhang, A.K.M., J. Yin, and Y.Q.

DECLARATION OF INTERESTS

The authors declare no competing interests.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

oneear.2024.09.016.

Received: January 14, 2024

Revised: May 27, 2024

Accepted: September 25, 2024

Published: October 17, 2024

REFERENCES

1. Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R.,

and Mearns, L.O. (2000). Climate extremes: observations, modeling, and

impacts. Science 289, 2068–2074. https://doi.org/10.1126/science.289.

5487.2068.

2. Meehl, G.A., and Tebaldi, C. (2004). More intense, more frequent, and

longer lasting heat waves in the 21st century. Science 305, 994–997.

https://doi.org/10.1126/science.1098704.

3. Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V.,

Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., et al. (2005).

Europe-wide reduction in primary productivity caused by the heat and

drought in 2003. Nature 437, 529–533. https://doi.org/10.1038/

nature03972.

4. Jaeger, W.K., Amos, A., Conklin, D.R., Langpap, C., Moore, K., and

Plantinga, A.J. (2019). Scope and limitations of drought management

within complex human–natural systems. Nat. Sustain. 2, 710–717.

https://doi.org/10.1038/s41893-019-0326-y.

5. Zhang, P., Jeong, J.H., Yoon, J.H., Kim, H., Wang, S.Y.S., Linderholm,

H.W., Fang, K.,Wu, X., Chen, D., andChen, D. (2020). Abrupt shift to hotter

and drier climate over inner East Asia beyond the tipping point. Science

370, 1095–1099. https://doi.org/10.1126/science.abb3368.

6. Lim, E.P., Hendon, H.H., Boschat, G., Hudson, D., Thompson, D.W.J.,

Dowdy, A.J., and Arblaster, J.M. (2019). Australian hot and dry extremes

induced by weakenings of the stratospheric polar vortex. Nat. Geosci.

12, 896–901. https://doi.org/10.1038/s41561-019-0456-x.

7. Bevacqua, E., Zappa, G., Lehner, F., and Zscheischler, J. (2022).

Precipitation trends determine future occurrences of compound hot–dry

events. Nat. Clim. Change 12, 350–355. https://doi.org/10.1038/s41558-

022-01309-5.

8. Dirmeyer, P.A., Jin, Y., Singh, B., and Yan, X. (2013). Evolving land–

atmosphere interactions over North America from CMIP5 simulations.

J. Clim. 26, 7313–7327. https://doi.org/10.1175/JCLI-D-12-00454.1.

9. Alizadeh, M.R., Adamowski, J., Nikoo, M.R., AghaKouchak, A., Dennison,

P., and Sadegh, M. (2020). A century of observations reveals increasing

mailto:zhanglq@bnu.edu.cn
https://data.isimip.org/search/tree/ISIMIP3b
https://grace.jpl.nasa.gov/data/get-data/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ncei.noaa.gov/
https://www.ncei.noaa.gov/
https://weijing-rs.github.io/product.html
https://weijing-rs.github.io/product.html
https://opendata.pku.edu.cn/dataverse/CHADS
https://opendata.pku.edu.cn/dataverse/CHADS
https://doi.org/10.5281/zenodo.12731062
https://doi.org/10.1016/j.oneear.2024.09.016
https://doi.org/10.1016/j.oneear.2024.09.016
https://doi.org/10.1126/science.289.5487.2068
https://doi.org/10.1126/science.289.5487.2068
https://doi.org/10.1126/science.1098704
https://doi.org/10.1038/nature03972
https://doi.org/10.1038/nature03972
https://doi.org/10.1038/s41893-019-0326-y
https://doi.org/10.1126/science.abb3368
https://doi.org/10.1038/s41561-019-0456-x
https://doi.org/10.1038/s41558-022-01309-5
https://doi.org/10.1038/s41558-022-01309-5
https://doi.org/10.1175/JCLI-D-12-00454.1


ll
Article

Please cite this article in press as: Yao et al., Socio-demographic factors shape mortality risk linked to compound drought-heatwave events under
climate change in China, One Earth (2024), https://doi.org/10.1016/j.oneear.2024.09.016
likelihood of continental-scale compound dry-hot extremes. Sci. Adv. 6,

eaaz4571. https://doi.org/10.1126/sciadv.aaz4571.

10. Mukherjee, S., and Mishra, A.K. (2021). Increase in compound drought

and heatwaves in a warming world. Geophys. Res. Lett. 48,

e2020GL090617. https://doi.org/10.1029/2020GL090617.

11. Sharma, S., and Mujumdar, P. (2017). Increasing frequency and spatial

extent of concurrent meteorological droughts and heatwaves in India.

Sci. Rep. 7, 15582. https://doi.org/10.1038/s41598-017-15896-3.

12. Yu, R., and Zhai, P. (2020). More frequent and widespread persistent com-

pound drought and heat event observed in China. Sci. Rep. 10, 14576.

https://doi.org/10.1038/s41598-020-71312-3.

13. Manning, C., Widmann, M., Bevacqua, E., Van Loon, A.F., Maraun, D., and

Vrac, M. (2019). Increased probability of compound long-duration dry and

hot events in Europe during summer (1950–2013). Environ. Res. Lett. 14,

094006. https://doi.org/10.1088/1748-9326/ab23bf.

14. Markonis, Y., Kumar, R., Hanel, M., Rakovec, O., Máca, P., and
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31. Oudin Åström, D., Schifano, P., Asta, F., Lallo, A., Michelozzi, P., Rocklöv,
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Supplemental Figures

Fig. S1. | The integrated modeling framework to assess future temperature rise, terrestrial water storage anomaly, and CDHW-related health burden. We consider
three scenarios that vary in socioeconomic trends, greenhouse gas emission control efforts and climate targets, i.e. SSP1-2.6, SSP3-7.0 and SSP5-8.5. For each scenario, we
simulate the daily maximum 2 m air temperature (Tmax) and terrestrial water storage (TWS) at 0.5°×0.5° spatial resolution using ten GCM-GHM coupling models from CMIP6.
More detailed descriptions of the scenarios are available in Methods and in Supplementary Note 1.



Fig. S2. | Validation of the GCM-GHM coupling model simulations. A, validation of GCM Tmax simulations with meteorological station data. B, validation of GCM daily mean
temperature simulations with meteorological station data. C, validation of GCM daily precipitation simulations with meteorological station data. D, validation of GCM-GHM TWS
simulations with GRACE satellite measurements. The centre line indicates the median value, the box bounds indicate the 25th/75th percentile values, the whiskers indicate the
minimum/maximum values and the points indicate the outliers.



Fig. S3. | Historical and projected changes in the frequency of CDHWs under different definitions. Variations in the spatially averaged frequency of CDHWs under
different definitions across China for historical (1941 to 1980), recent (1981 to 2014), and future periods (2015 to 2100) based on selected future climate scenarios (SSP1-2.6,
SSP3-7.0, and SSP5-8.5). The asterisks indicate that the change is significant (p<0.05), which is detected by Mann-Kendall trend test. The shading represents the 95%
confidence intervals (CIs).



Fig. S4. | Historical and projected changes in the duration of CDHWs under different definitions. Variations in the spatially averaged duration of CDHWs under different
definitions across China for historical (1941 to 1980), recent (1981 to 2014), and future periods (2015 to 2100) based on selected future climate scenarios (SSP1-2.6, SSP3-7.0,
and SSP5-8.5). The asterisks indicate that the change is significant (p<0.05), which is detected by Mann-Kendall trend test. The shading represents the 95% CIs.



Fig. S5. | Historical and projected changes in the severity of CDHWs under different definitions. Variations in the spatially averaged severity of CDHWs under different
definitions across China for historical (1941 to 1980), recent (1981 to 2014), and future periods (2015 to 2100) based on selected future climate scenarios (SSP1-2.6, SSP3-7.0,
and SSP5-8.5). The asterisks indicate that the change is significant (p<0.05), which is detected by Mann-Kendall trend test. The shading represents the 95% CIs.



Fig. S6. | The changes in the frequency of CDHWs under different definitions. Spatial patterns of relative changes in frequency of CDHWs under different definitions
between recent (1981 to 2014) and far-future (2058 to 2100) periods under SSP-5.85 scenarios.



Fig. S7. | The changes in the duration of CDHWs under different definitions. Spatial patterns of relative changes in duration of CDHWs under different definitions between
recent (1981 to 2014) and far-future (2058 to 2100) periods under SSP-5.85 scenarios.



Fig. S8. | The changes in the severity of CDHWs under different definitions. Spatial patterns of relative changes in severity of CDHWs under different definitions between
recent (1981 to 2014) and far-future (2058 to 2100) periods under SSP-5.85 scenarios.



Fig. S9. | Historical and projected changes in drought and heatwave characteristics. A-C, Variation in GCM-GHM-based MME mean projections of drought
characteristics—(A) frequency, (B) duration, and (C) severity—spatially averaged over China for historical (1941 to 1980), recent (1981 to 2014) and future periods (2015 to
2100) based on the selected future climate scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5). D-F, Variation in GCM-based MME mean projections of heatwave characteristics.
The asterisks indicate that the change is significant (p<0.05), which is detected by Mann-Kendall trend test. The shading represents the 95% CIs. The droughts in A-C are all
identified based TWS-DSI, and the heatwaves in D-E are all identified based on the 92.5th percentile temperature threshold and 3-day duration threshold.



Fig. S10. | Historical and projected changes in coincidence rate under different scenarios. Variation in GCM-GHM-based MME mean projections of coincidence
rate—spatially averaged over China for historical (1941 to 1980), recent (1981 to 2014) and future period (2015 to 2100) based on the selected future climate scenarios ((A)
SSP1-2.6, (B) SSP3-7.0, and (C) SSP5-8.5). The asterisks indicate that the change is significant (p<0.05) as detected by the Mann-Kendall trend tests. The CDHWs in A-C are
all identified based on the 92.5th percentile temperature threshold, 3-day duration threshold, and TWS-DSI as the drought index.



Fig. S11. | The changes in the characteristics of CDHWs under model simulations. Spatial patterns of relative changes in (A) frequency, (B) duration and (C) severity of
CDHWs between two periods (i.e. historical: 1941 to 1980, and recent: 1981 to 2014). The CDHWs in A-C are all identified based on the 92.5th percentile temperature
threshold, 3-day duration threshold, and TWS-DSI as the drought index.



Fig. S12. | The changes in CDHW characteristics under model simulations. Spatial patterns of relative changes in CDHW frequency, duration and severity between recent
(1981 to 2014) and near-future (2015 to 2057) periods under different SSP-RCP scenarios. The CDHWs in A-I are all identified based on the 92.5th percentile temperature
threshold, 3-day duration threshold, and TWS-DSI as the drought index.



Fig. S13. | The changes in CDHW characteristics under model simulations. Spatial patterns of relative changes in CDHW frequency, duration and severity between recent
and far-future (2058 to 2100) periods under different SSP-RCP scenarios. The CDHWs in A-I are all identified based on the 92.5th percentile temperature threshold, 3-day
duration threshold, and TWS-DSI as the drought index.



Fig. S14. | Robustness tests for the baseline regression. The robustness tests for the baseline of A, frequency, B, duration and C, severity of CDHWs. The first row
describes the baseline estimates. The second row excludes older adult samples from Guangxi province which has the highest number of deaths. The third row excludes
older adult samples from the year with the highest number of deaths in 2006. The fourth row adds urban-rural residences as an additional control variable. The fifth row adds
counties of the older adults as an additional control variable. The sixth row adds urban-rural residences and counties of the older adults as additional control variables. The
seventh row adds diseases of the older adults as additional control variables. The eighth row only controls for age and sex. Points and lines represent HR estimates and their
corresponding 95% CIs, respectively (please see Supplementary Table 9 for more details).



Fig. S15. | HRs of deaths associated with 1-unit increase in duration and severity of CDHWs by sex subgroup. A, HRs and 95% CIs for the association between 

all-cause mortality and duration of CDHW exposures by sex sub group for the baseline model. Points and lines represent HR estimates and their 95% CIs, respectively. B,
HRs and 95% CIs for the association between all-cause mortality and severity of CDHW exposures by sex sub group for the baseline model. Points and lines represent HR 

estimates and their 95% CIs, respectively. C, Curve associations between all-cause mortality and 1-day increase in duration of CDHW by sex sub-group for Model 2. The 

reference duration is 0. D, Curve associations between all-cause mortality and 1-unit increase in severity of CDHW by sex sub-group for Model 2. The reference severity is 0.



Supplemental Tables

Table S1. | Summary of the model simulations under ISIMIP3b.

GHM
SSP-RCP scenario Historical SSP1-2.6 SSP3-7.0 SSP5-8.5

GCM
Simulation period

1941-2014 2015-2100 2015-2100 2015-2100

CWatM

GFDL-ESM4 ✓ ✓ ✓ ✓
IPSL-CM6A-LR ✓ ✓ ✓ ✓

MPI-ESM1-2-HR ✓ ✓ ✓ ✓
MRI-ESM2-0 ✓ ✓ ✓ ✓

UKESM1-0-LL ✓ ✓ ✓ ✓

H08

GFDL-ESM4 ✓ ✓ ✓ ✓
IPSL-CM6A-LR ✓ ✓ ✓ ✓

MPI-ESM1-2-HR ✓ ✓ ✓ ✓
MRI-ESM2-0 ✓ ✓ ✓ ✓

UKESM1-0-LL ✓ ✓ ✓ ✓



Table S2. | Information of the used global hydrological models.

Model Evapotranspiration Snow module Groundwater module Runoff module River routing Reservoir Human water use Reference
name module (surface/subsurface runoff) module operation

CWatM Penman-Monteith Degree-day Explicit Saturation excess, Kinematic water Yes Irrigation, domestic, Burek et al.
formulation method (single reservoir) baseflow formulation industry, livestock (2020)(1)

H08 Bulk formulation Energy balance Explicit (renewable and Saturation excess, Linear reservoir Yes Irrigation Hanasaki et
method non-renewable reservoirs) baseflow model al. (2018)(2)



Table S3. | Statistics of the survey data (Individuals=35,085; Records=86,305).

Variable Observation Mean Std. Dev. Min Max Missing Observation

Death 86,305 0.247 0.431 0 1 0
Age (years) 86,305 88.105 11.253 65 120 0
BMI 82,599 23.259 5.353 11.718 38.205 3,706
Education (years) 85,858 1.941 3.352 0 25 447
Household income (yuan) 85,567 18575.35 27566.67 0 96752 738
Sex 86,305 0

Woman 36,600 (57.59%)
Man 49,705 (42.41%)

Marital status 85,924 381
Currently married, living with spouse 24,125 (28.08%)
Separated 1,409 (1.64%)
Divorced 324 (0.38%)
Widowed 59,193 (68.89%)
Never married 873 (1.02%)

Smoking status 85,826 479
Never 57,293 (66.75%)
Currently 1,307 (1.52%)
Past 13,328 (15.53%)
Always 13,898 (16.19%)

Drinking status 85,694 611
Never 58,803 (68.62%)
Currently 2,430 (2.84%)
Past 12,779 (14.91%)
Always 11,682 (13.63%)

Physical activity 85,522 783
Never 50,744 (59.33%)
Currently 7,913 (9.25%)
Past 11,174 (13.07%)
Always 15,691 (18.35%)

Residence 86,305 0
Urban 48,958 (56.73%)
Rural 37,347 (43.27%)

Hypertension 82,370 0.208 0.406 0 1 3,935
Diabetes 81,867 0.301 0.172 0 1 4,438
Heart disease 82,126 0.099 0.299 0 1 4,179
Stroke and cerebrovascular disease 82,283 0.067 0.251 0 1 4,022
Bronchitis/emphysema/pneumonia and asthma 82,554 0.124 0.331 0 1 3,751
Tuberculosis 82,253 0.008 0.088 0 1 4,052
Cataracts 82,185 0.127 0.333 0 1 4,120
Glaucoma 79,084 0.025 0.155 0 1 7,221
Cancer 81,399 0.006 0.078 0 1 4,906
Gastrointestinal ulcers 79,032 0.049 0.217 0 1 7,273
Parkinson’s disease 80,184 0.006 0.078 0 1 6,121
Pressure ulcers 79,364 0.008 0.091 0 1 6,941
Arthritis 82,736 0.174 0.379 0 1 3,569
Dementia 82,880 0.034 0.182 0 1 3,425



Table S4. | Testing for co-linearity among variables under different CDHW definitions.

CDHW definition VIF
Temperature threshold Duration threshold Drought index Frequency Duration Severity Age Sex Smoking status Drinking status Exercising status Household income BMI Marital status Education status Relative humidity Ozone concentrations PM1 concentrations PM2.5 concentrations PM10 concentrations
90% 2 SPI 1.56 18.81 17.23 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.12 1.14 11.85 40.84 38.18
90% 3 SPI 1.74 19.61 17.48 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.13 1.14 11.85 40.8 38.21
90% 4 SPI 1.85 19.94 17.65 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.12 1.14 11.85 40.76 38.15
90% 2 SPEI 1.39 15.33 14.81 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.12 1.14 11.83 40.57 38.1
90% 3 SPEI 1.53 14.89 13.87 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.12 1.14 11.83 40.51 38.07
90% 4 SPEI 1.65 15.33 14.02 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.12 1.14 11.82 40.49 38.04
90% 2 TWSA 1.26 5.82 5.59 1.42 1.65 1.45 1.26 1.11 1.05 1.07 1.47 1.34 2.13 1.17 11.86 41.25 38.77
90% 3 TWSA 1.32 6.16 5.77 1.42 1.65 1.45 1.26 1.11 1.04 1.07 1.47 1.34 2.14 1.16 11.85 41.09 38.72
90% 4 TWSA 1.42 6.39 5.85 1.42 1.65 1.45 1.26 1.11 1.04 1.07 1.47 1.34 2.14 1.16 11.84 41.11 38.73
92.50% 2 SPI 1.64 20 18.06 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.13 1.14 11.85 40.83 38.14
92.50% 3 SPI 1.78 20.7 18.34 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.14 11.87 40.9 38.17
92.50% 4 SPI 1.76 18.55 16.59 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.14 11.87 40.9 38.15
92.50% 2 SPEI 1.48 13.61 12.81 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.12 1.14 11.86 40.5 38.02
92.50% 3 SPEI 1.58 14.3 13.16 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.14 11.85 40.55 38.04
92.50% 4 SPEI 1.57 12.38 11.58 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.14 11.84 40.5 38.07
92.50% 2 TWSA 1.34 6.64 6.14 1.42 1.65 1.45 1.26 1.11 1.04 1.07 1.47 1.34 2.13 1.16 11.84 41.15 38.74
92.50% 3 TWSA 1.41 6.89 6.29 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.13 1.16 11.84 41.2 38.75
92.50% 4 TWSA 1.48 6.7 6 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.13 1.15 11.84 41.11 38.7
95% 2 SPI 1.62 23.25 21.05 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.14 11.93 41.07 38.15
95% 3 SPI 1.8 22.82 20.18 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.14 11.96 41.12 38.13
95% 4 SPI 2.09 23.52 20.14 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.14 11.91 40.91 38.08
95% 2 SPEI 1.56 13.76 12.7 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.14 11.91 40.6 38
95% 3 SPEI 1.72 14.18 12.7 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.14 11.89 40.67 37.99
95% 4 SPEI 1.98 14.35 12.43 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.14 11.86 40.5 37.98
95% 2 TWSA 1.39 7.01 6.42 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.13 1.15 11.86 41.17 38.69
95% 3 TWSA 1.49 7.51 6.7 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.13 1.15 11.86 41.3 38.7
95% 4 TWSA 1.6 7.73 6.71 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.14 1.14 11.86 41.13 38.66
97.50% 2 SPI 1.77 25.95 23.42 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.13 1.14 11.89 40.88 38.13
97.50% 3 SPI 2.08 25.89 23.07 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.13 1.14 11.9 40.98 38.06
97.50% 4 SPI 2.45 25.35 22.33 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.13 1.15 11.89 40.81 37.99
97.50% 2 SPEI 1.79 15.65 14.74 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.13 1.14 11.91 40.4 37.9
97.50% 3 SPEI 2.05 15.36 14.67 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.13 1.14 11.9 40.48 37.94
97.50% 4 SPEI 2.45 15.83 14.58 1.42 1.65 1.45 1.26 1.1 1.04 1.06 1.47 1.33 2.12 1.15 11.89 40.41 37.91
97.50% 2 TWSA 1.42 7.32 6.71 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.34 2.13 1.15 11.86 41.15 38.59
97.50% 3 TWSA 1.61 7.71 6.81 1.42 1.65 1.45 1.26 1.1 1.05 1.07 1.47 1.33 2.13 1.15 11.85 41.14 38.5
97.50% 4 TWSA 1.85 8.14 6.95 1.42 1.65 1.45 1.26 1.1 1.05 1.07 1.47 1.33 2.13 1.15 11.84 41.03 38.36
99% 2 SPI 1.84 34.94 32.25 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.15 11.91 40.71 37.96
99% 3 SPI 2.25 31.42 29.25 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.15 11.99 40.85 37.94
99% 4 SPI 3.49 32.55 29.38 1.42 1.65 1.45 1.26 1.1 1.04 1.07 1.47 1.33 2.12 1.15 11.96 40.81 37.97
99% 2 SPEI 2.09 19.09 16.9 1.42 1.65 1.45 1.26 1.1 1.04 1.06 1.47 1.33 2.12 1.15 11.88 40.4 37.93
99% 3 SPEI 2.39 18.18 16.36 1.42 1.65 1.45 1.26 1.1 1.04 1.06 1.47 1.33 2.11 1.15 11.93 40.45 37.88
99% 4 SPEI 3.75 20.47 16.92 1.42 1.65 1.45 1.26 1.1 1.04 1.06 1.47 1.33 2.11 1.15 11.91 40.48 37.93
99% 2 TWSA 1.67 9.9 8.55 1.42 1.65 1.45 1.26 1.1 1.05 1.07 1.47 1.33 2.13 1.15 11.84 40.82 38.24
99% 3 TWSA 2.12 10.41 8.39 1.42 1.65 1.45 1.26 1.1 1.05 1.07 1.47 1.33 2.13 1.15 11.84 40.79 38.15
99% 4 TWSA 2.99 11.73 8.71 1.42 1.65 1.45 1.26 1.1 1.05 1.07 1.47 1.33 2.13 1.16 11.83 40.8 38.16

Notes: VIF stands for Variance Inflation Factor, and if VIF is less than 10, it indicates that there is no co-linearity among the variables.



Table S5. | The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for baseline regressions under
different CDHW definitions.

CDHW definition
AIC BIC

Temperature threshold Duration threshold Drought index

90% 2 SPI 36871.8 36885.8
90% 3 SPI 36821.6 36835.6
90% 4 SPI 36808.7 36822.6
90% 2 SPEI 36943.3 36957.3
90% 3 SPEI 36893.9 36907.9
90% 4 SPEI 36915.8 36929.7
90% 2 TWSA 36775.2 36789.2
90% 3 TWSA 36711 36725
90% 4 TWSA 36778.2 36792.2
92.50% 2 SPI 36868.7 36882.6
92.50% 3 SPI 36819.8 36833.7
92.50% 4 SPI 36854.3 36868.2
92.50% 2 SPEI 36888.2 36902.2
92.50% 3 SPEI 36891.4 36905.4
92.50% 4 SPEI 36866.7 36880.6
92.50% 2 TWSA 36762.8 36776.7
92.50% 3 TWSA 36708.3 36722.3
92.50% 4 TWSA 36819.8 36833.8
95% 2 SPI 36812.4 36826.3
95% 3 SPI 36815 36829
95% 4 SPI 36763.9 36777.8
95% 2 SPEI 36895 36908.9
95% 3 SPEI 36910.5 36924.5
95% 4 SPEI 36887.4 36901.3
95% 2 TWSA 36781.9 36795.8
95% 3 TWSA 36825.1 36839.1
95% 4 TWSA 36845.9 36859.9
97.50% 2 SPI 36719.4 36733.4
97.50% 3 SPI 36759.7 36773.6
97.50% 4 SPI 36820.7 36834.7
97.50% 2 SPEI 36948.4 36962.3
97.50% 3 SPEI 36926.9 36940.8
97.50% 4 SPEI 36900.6 36914.5
97.50% 2 TWSA 36749.7 36763.7
97.50% 3 TWSA 36968.5 36982.5
97.50% 4 TWSA 36995.2 37009.2
99% 2 SPI 36770.6 36784.6
99% 3 SPI 36898.2 36912.2
99% 4 SPI 36928 36941.9
99% 2 SPEI 37027.8 37041.7
99% 3 SPEI 36966 36979.9
99% 4 SPEI 36993.5 37007.4
99% 2 TWSA 36850.2 36864.2
99% 3 TWSA 36951.7 36965.6
99% 4 TWSA 36950.1 36964

Notes: Each row in the table represents a separate regression using cox proportional hazards model. Among them, the combination with
the lowest AIC and BIC is highlighted in red font.



Table S6. | Testing for co-linearity among variables of baseline regression model.

Variables VIF

Frequency of CDHW 1.4
Duration of CDHW 6.87
Severity of CDHW 6.23
Age 1.42
Sex 1.65
Smoking status 1.45
Drinking status 1.26
Exercising status 1.1
Household income 1.04
BMI 1.05
Marital status 1.47
Education status 1.34
Relative humidity 1.48
Ozone concentrations 1.08
PM2.5 concentrations 1.4

Notes: VIF stands for Variance Inflation Factor, and if VIF is less than 10, it indicates that there is no co-linearity among the variables.



Table S7. | HRs of the baseline Cox proportional hazards model.

Variables Hazard ratio

Frequency of CDHWs 1.05424***
[0.00455]

Duration of CDHWs 1.01206***
[0.00117]

Severity of CDHWs 1.01279***
[0.00238]

Age 1.04797***
[0.00089]

1.Sex 1.15485***
[0.02115]

2.Smoking status 1.05114
[0.05687]

3.Smoking status 1.05880**
[0.02434]

4.Smoking status 1.20344***
[0.02485]

2.Drinking status 1.00567
[0.03912]

3.Drinking status 1.04840**
[0.02233]

4.Drinking status 1.19327***
[0.02414]

2.Physical activity 0.80025***
[0.01980]

3.Physical activity 1.29252***
[0.02364]

4.Physical activity 0.98454
[0.01940]

Household income 0.88843***
[0.00294]

BMI 1.00874***
[0.00176]

2.Marital status 1.29201***
[0.07410]

3.Marital status 1.71694***
[0.19096]

4.Marital status 1.36043***
[0.02865]

5.Marital status 1.35770***
[0.10075]

Education 0.99169***
[0.00276]

Relative humidity 1.00822***
[0.00125]

Ozone concentration 0.99847
[0.00102]

PM2.5 concentration 1.00508***
[0.00103]

No. of subjects 33,971
No. of failures 19,662
Time at risk 236,247
Observations 83,295

Notes: Each column represents a separate regression using the Cox proportional hazards model. The numbers show the HR of each
measure on mortality risk of older adults. Standard errors are shown in parentheses. *p<0.1, **p<0.05, ***p<0.01.



Table S8. | Schoenfeld residual test for proportional hazards assumption of baseline Cox proportional hazards model.

Variables rho chi2 df Prob>chi2

Frequency of CDHWs -0.00626 0.97 1 0.3239
Duration of CDHWs 0.00732 1.33 1 0.2487
Severity of CDHWs 0.00801 1.59 1 0.2069
Age -0.00571 0.81 1 0.3682
Sex 0.00447 0.5 1 0.4812
Smoking status -0.00199 0.1 1 0.7538
Drinking status -0.00190 0.06 1 0.8005
Exercising status -0.00212 0.11 1 0.7383
Household income 0.00168 0.07 1 0.7912
BMI -0.00237 0.14 1 0.7088
Marital status -0.00259 0.17 1 0.6832
Education status -0.00177 0.08 1 0.7803
Relative humidity -0.00899 2.01 1 0.1566
Ozone concentrations -0.00189 0.09 1 0.7658
PM2.5 concentrations 0.01098 2.99 1 0.0836



Table S9. | Robustness checks of the baseline Cox proportional hazards model.

Variables Hazard ratio

Frequency of CDHWs 1.05424*** 1.06230*** 1.04272*** 1.05391*** 1.05574*** 1.05565*** 1.04700*** 1.03519***
[0.00455] [0.00468] [0.00463] [0.00455] [0.00459] [0.00458] [0.00472] [0.00414]

Duration of CDHWs 1.01206*** 1.01389*** 1.01444*** 1.01183*** 1.01057*** 1.01049*** 1.01260*** 1.01080***
[0.00117] [0.00117] [0.00119] [0.00117] [0.00118] [0.00118] [0.00116] [0.00110]

Severity of CDHWs 1.01279*** 1.01369*** 1.02147*** 1.01241*** 1.01104*** 1.01093*** 1.01057*** 1.01670***
[0.00238] [0.00240] [0.00226] [0.00238] [0.00235] [0.00236] [0.00231] [0.00215]

Age 1.04797*** 1.04769*** 1.04902*** 1.04791*** 1.04758*** 1.04756*** 1.04516*** 1.05300***
[0.00089] [0.00091] [0.00094] [0.00089] [0.00090] [0.00090] [0.00095] [0.00074]

1.Sex 1.15485*** 1.14401*** 1.17338*** 1.15788*** 1.15163*** 1.15261*** 1.15006*** 1.15818***
[0.02115] [0.02140] [0.02257] [0.02119] [0.02115] [0.02118] [0.02233] [0.01640]

2.Smoking status 1.05114 1.05949 1.00671 1.05022 1.05136 1.05108 0.99250
[0.05687] [0.05825] [0.05886] [0.05682] [0.05700] [0.05698] [0.05875]

3.Smoking status 1.05880** 1.07456*** 1.04808* 1.05946** 1.06999*** 1.07018*** 1.03440
[0.02434] [0.02534] [0.02536] [0.02434] [0.02460] [0.02460] [0.02560]

4.Smoking status 1.20344*** 1.21657*** 1.20038*** 1.20086*** 1.19452*** 1.19378*** 1.17064***
[0.02485] [0.02558] [0.02619] [0.02481] [0.02487] [0.02487] [0.02596]

2.Drinking status 1.00567 1.01339 0.98954 1.00483 1.00129 1.00106 0.95646
[0.03912] [0.04003] [0.04109] [0.03910] [0.03903] [0.03902] [0.04050]

3.Drinking status 1.04840** 1.05243** 1.03188 1.04961** 1.04760** 1.04804** 1.04265*
[0.02233] [0.02278] [0.02330] [0.02234] [0.02253] [0.02253] [0.02374]

4.Drinking status 1.19327*** 1.19573*** 1.19440*** 1.19120*** 1.19908*** 1.19840*** 1.15384***
[0.02414] [0.02470] [0.02545] [0.02409] [0.02458] [0.02457] [0.02504]

2.Physical activity 0.80025*** 0.80502*** 0.77613*** 0.79573*** 0.80865*** 0.80717*** 0.73750***
[0.01980] [0.02031] [0.02043] [0.01971] [0.02011] [0.02008] [0.01957]

3.Physical activity 1.29252*** 1.29251*** 1.28035*** 1.28247*** 1.28157*** 1.27834*** 1.20583***
[0.02364] [0.02405] [0.02492] [0.02361] [0.02375] [0.02384] [0.02367]

4.Physical activity 0.98454 0.99517 0.96313* 0.97641 0.98393 0.98131 0.96579*
[0.01940] [0.02022] [0.02008] [0.01939] [0.01949] [0.01958] [0.02038]

Household income 0.88843*** 0.88200*** 0.89370*** 0.88719*** 0.88310*** 0.88272*** 0.88618***
[0.00294] [0.00318] [0.00301] [0.00299] [0.00302] [0.00306] [0.00315]

BMI 1.00874*** 1.00864*** 1.01023*** 1.00870*** 1.00885*** 1.00884*** 1.00863***
[0.00176] [0.00176] [0.00179] [0.00176] [0.00176] [0.00176] [0.00178]

2.Marital status 1.29201*** 1.29147*** 1.26711*** 1.29372*** 1.31066*** 1.31109*** 1.31143***
[0.07410] [0.07726] [0.07688] [0.07423] [0.07632] [0.07635] [0.08284]

3.Marital status 1.71694*** 1.74783*** 1.72556*** 1.71316*** 1.71474*** 1.71356*** 1.54970***
[0.19096] [0.19915] [0.20495] [0.19025] [0.19550] [0.19515] [0.18918]

4.Marital status 1.36043*** 1.35609*** 1.36978*** 1.36108*** 1.36343*** 1.36359*** 1.36032***
[0.02865] [0.02920] [0.03032] [0.02865] [0.02897] [0.02896] [0.03021]

5.Marital status 1.35770*** 1.35062*** 1.34698*** 1.35020*** 1.36934*** 1.36677*** 1.35773***
[0.10075] [0.10579] [0.10676] [0.10010] [0.10125] [0.10104] [0.10551]

Education 0.99169*** 0.99161*** 0.99058*** 0.99084*** 0.98939*** 0.98912*** 0.99103***
[0.00276] [0.00283] [0.00292] [0.00276] [0.00277] [0.00278] [0.00289]

Relative humidity 1.00822*** 1.00803*** 1.00756*** 1.00862*** 1.02677*** 1.02680*** 1.01497***
[0.00125] [0.00126] [0.00133] [0.00126] [0.00164] [0.00164] [0.00135]

Ozone concentration 0.99847 0.99828* 0.99650*** 0.99837 0.99115*** 0.99116*** 1.00034
[0.00102] [0.00103] [0.00106] [0.00101] [0.00106] [0.00106] [0.00108]

PM2.5 concentration 1.00508*** 1.00605*** 1.00281*** 1.00525*** 1.01184*** 1.01185*** 1.00380***
[0.00103] [0.00105] [0.00109] [0.00104] [0.00110] [0.00110] [0.00110]

Model 1 3 4 5 6 7 8 9
No. of subjects 33,971 30,134 33,971 33,971 33,971 33,971 31,331 35,128
No. of failures 19,662 16,754 17,734 19,662 19,662 19,662 16,855 21,341
Time at risk 236,247 207,186 234,034 236,247 236,247 236,247 196,210 255,901
Observations 83,295 79,336 81,517 83,295 83,295 83,295 71,302 89,231

Notes: Each column represents a separate regression using the Cox proportional hazards model. The numbers show the HR of each
measure on mortality risk of older adults. Standard errors are shown in parentheses. *p<0.1, **p<0.05, ***p<0.01.



Table S10. | The heterogeneous impacts of CDHW characteristics on mortality risk of older adults in the age subgroup.

Variables Hazard ratio

Frequency of CDHWs 1.12641 1.05486*** 1.05396***
[0.08207] [0.00472] [0.00456]

Frequency of CDHWs*age_group[65-69] 1.00000
[0.00000]

Frequency of CDHWs*age_group[70-74] 0.97626
[0.07654]

Frequency of CDHWs*age_group[75-79] 0.93529
[0.07015]

Frequency of CDHWs*age_group[80-84] 0.92134
[0.06854]

Frequency of CDHWs*age_group[85-89] 0.93540
[0.06901]

Frequency of CDHWs*age_group[90-95] 0.92256
[0.06772]

Frequency of CDHWs*age_group[95-99] 0.93443
[0.06848]

Duration of CDHWs 1.01196*** 1.03494 1.01204***
[0.00112] [0.02357] [0.00116]

Duration of CDHWs*age_group[65-69] 1.00000
[0.00000]

Duration of CDHWs*age_group[70-74] 0.98450
[0.02398]

Duration of CDHWs*age_group[75-79] 0.98950
[0.02319]

Duration of CDHWs*age_group[80-84] 0.98587
[0.02301]

Duration of CDHWs*age_group[85-89] 0.97663
[0.02252]

Duration of CDHWs*age_group[90-95] 0.97745
[0.02241]

Duration of CDHWs*age_group[95-99] 0.97461
[0.02230]

Severity of CDHWs 1.01184*** 1.01133*** 1.04447
[0.00237] [0.00212] [0.03953]

Severity of CDHWs*age_group[65-69] 1.00000
[0.00000]

Severity of CDHWs*age_group[70-74] 0.98006
[0.04130]

Severity of CDHWs*age_group[75-79] 1.00120
[0.03936]

Severity of CDHWs*age_group[80-84] 0.98686
[0.03866]

Severity of CDHWs*age_group[85-89] 0.97020
[0.03741]

Severity of CDHWs*age_group[90-95] 0.96941
[0.03701]

Severity of CDHWs*age_group[95-99] 0.96509
[0.03674]

Control variables ✓ ✓ ✓
No. of subjects 33,971 33,971 33,971
No. of failures 19,662 19,662 19,662
Time at risk 236,247 236,247 236,247
Observations 83,295 83,295 83,295

Notes: Each column represents a separate regression using Cox proportional hazards model. The numbers show the
HR of each measure on mortality risk of older adults. Standard errors are shown in parentheses. *p<0.1, **p<0.05,
***p<0.01.



Table S11. | The heterogeneous impacts of CDHW characteristics on mortality risk of older adults in the sex subgroup.

Variables Hazard ratio

Frequency of CDHWs 1.05595*** 1.05512*** 1.05419***
[0.00569] [0.00508] [0.00455]

Frequency of CDHWs*sex_group 0.99615
[0.00778]

Duration of CDHWs 1.01178*** 1.00930*** 1.01203***
[0.00102] [0.00141] [0.00114]

Duration of CDHWs*sex_group 1.00654***
[0.00188]

Severity of CDHWs 1.01278*** 1.01285*** 1.00902***
[0.00238] [0.00243] [0.00283]

Severity of CDHWs*sex_group 1.00919**
[0.00373]

1.Sex 1.16220*** 1.16247*** 1.16189***
[0.02542] [0.02549] [0.02511]

Age 1.04798*** 1.04783*** 1.04777***
[0.00089] [0.00089] [0.00089]

2.Smoking status 1.05114 1.08440 1.08355
[0.05685] [0.05870] [0.05843]

3.Smoking status 1.05896** 1.10554*** 1.10690***
[0.02434] [0.02461] [0.02467]

4.Smoking status 1.20352*** 1.24583*** 1.25057***
[0.02485] [0.02507] [0.02512]

2.Drinking status 1.00569 1.00248 1.01150
[0.03911] [0.03904] [0.03949]

3.Drinking status 1.04812** 1.06051*** 1.07257***
[0.02234] [0.02242] [0.02268]

4.Drinking status 1.19331*** 1.21697*** 1.21925***
[0.02414] [0.02446] [0.02451]

2.Physical activity 0.80022*** 0.80918*** 0.80327***
[0.01980] [0.01993] [0.01988]

3.Physical activity 1.29248*** 1.30419*** 1.29232***
[0.02364] [0.02382] [0.02368]

4.Physical activity 0.98459 0.99666 0.98815
[0.01940] [0.01960] [0.01949]

Household income 0.88844*** 0.88955*** 0.88819***
[0.00294] [0.00295] [0.00295]

BMI 1.00874*** 1.00854*** 1.00859***
[0.00176] [0.00177] [0.00177]

2.Marital status 1.29217*** 1.29578*** 1.28817***
[0.07407] [0.07415] [0.07384]

3.Marital status 1.71661*** 1.71944*** 1.71484***
[0.19080] [0.18673] [0.18804]

4.Marital status 1.36012*** 1.32661*** 1.32349***
[0.02864] [0.02770] [0.02766]

5.Marital status 1.35803*** 1.39321*** 1.37659***
[0.10069] [0.10285] [0.10216]

Education 0.99170*** 0.99658 0.99696
[0.00276] [0.00268] [0.00266]

Relative humidity 1.00822*** 1.00841*** 1.00803***
[0.00125] [0.00123] [0.00125]

Ozone concentration 0.99847 0.99676*** 0.99852
[0.00102] [0.00101] [0.00102]

PM2.5 concentration 1.00509*** 1.00349*** 1.00484***
[0.00103] [0.00102] [0.00103]

No. of subjects 33,971 33,971 33,971
No. of failures 19,662 19,662 19,662
Time at risk 236,247 236,247 236,247
Observations 83,295 83,295 83,295

Notes: Each column represents a separate regression using Cox proportional hazards model. The numbers show the HR of each measure
on mortality risk of older adults. Standard errors are shown in parentheses. *p<0.1, **p<0.05, ***p<0.01.



Table S12. | The baseline mortality rates in China (deaths per thousand older adults).

Year Sex Age
GBD 2019 Our estimates

Central Value Lower bound Upper bound based on IF

2017

woman

65 - 69 58.3479 67.5663 49.6646 60.7113
70 - 74 106.8721 122.2522 91.9779 111.5928
75 - 79 179.2183 202.4823 156.2598 171.4418
80 - 84 317.6486 349.5825 284.7623 330.366
85 - 89 472.4616 512.4582 429.84 502.2881
90 - 94 647.5205 683.9867 608.2065 644.6004
95 - 99 795.9281 823.211 765.9193 852.2263

man

65 - 69 103.4956 121.6697 86.2603 106.0596
70 - 74 175.9385 203.395 149.1542 167.8389
75 - 79 279.5364 315.6121 243.0195 263.252
80 - 84 451.9994 493.2856 407.5921 475.0367
85 - 89 746.7031 772.6532 715.7196 766.542
90 - 94 845.423 865.3247 820.1493 852.4227
95 - 99 880.4467 893.9098 863.0156 918.9933

2018

woman

65 - 69 57.7524 68.296 48.5671 58.9293
70 - 74 105.6169 123.1005 89.8699 108.8311
75 - 79 177.5168 203.7137 153.1191 166.9682
80 - 84 314.5934 350.3723 279.5667 321.1248
85 - 89 468.6575 513.3569 423.1024 487.7575
90 - 94 644.0954 685.084 601.8894 625.1923
95 - 99 793.641 824.7964 760.7382 825.9211

man

65 - 69 100.4842 119.8498 83.1126 103.1057
70 - 74 174.3305 204.0454 146.8407 163.7361
75 - 79 275.0956 314.1055 237.6298 256.4717
80 - 84 448.7861 493.5928 402.7613 462.1858
85 - 89 724.1838 754.5988 690.0785 744.8801
90 - 94 831.5318 854.3596 803.6104 827.1911
95 - 99 871.2803 886.7218 849.487 891.0227

2019

woman

65 - 69 57.2218 69.2373 47.1469 57.2174
70 - 74 104.4596 124.3968 87.1877 106.1088
75 - 79 176.0077 205.7967 149.1856 162.5258
80 - 84 311.8367 352.1387 273.2601 311.8335
85 - 89 465.1583 515.1252 414.5054 473.128
90 - 94 640.8695 686.3889 593.3419 605.7266
95 - 99 791.4119 825.101 753.9602 799.6004

man

65 - 69 99.3482 121.2582 80.0551 100.2731
70 - 74 172.2942 205.6588 141.7371 159.7495
75 - 79 272.7037 316.5297 230.8328 249.8816
80 - 84 445.0924 495.3482 393.3546 449.5387
85 - 89 719.873 754.3504 681.0377 723.6052
90 - 94 829.2142 854.797 798.1843 802.5168
95 - 99 868.3118 884.7486 847.0889 863.753



Table S13. | Summary of socio-demographic projections consistent with SSPs.

Year Sex Age
Population Baseline mortality rates

SSP1-2.6 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP3-7.0 SSP5-8.5

2050

woman

65-69 46.1133013 43.06942158 46.13794768 22.7978017 32.93084156 22.54188165
70-74 40.3763234 36.10414001 40.39537365 48.99963949 68.04519248 49.66547162
75-79 47.70098134 39.39677599 47.69887374 71.55446415 102.0812858 71.80978784
80-84 40.71244618 29.61665537 40.70849797 131.9367722 190.9464954 131.9162895
85-89 23.37165229 14.0242306 23.37176125 200.2511111 291.0168548 199.4798814
90-94 11.40263106 5.181423302 11.40279665 257.6657446 376.0359813 256.0784846
95-99 4.444153712 1.412687345 4.444043123 334.475535 491.3896024 331.6077639

man

65-69 46.28930254 41.48871701 46.29537372 45.05650846 64.15079277 44.5646174
70-74 38.7316722 32.60175137 38.74121703 82.28642736 109.1877196 84.23564642
75-79 42.78677326 32.41376002 42.77991392 123.7930193 167.722982 125.7332485
80-84 33.9912629 21.97292482 33.98513621 214.3374005 296.0308234 216.2352028
85-89 17.25268978 8.894866741 17.25175124 334.5098163 470.2267377 335.1117715
90-94 7.399314709 2.804994522 7.399092731 359.3611346 513.5923284 357.5870099
95-99 2.311261601 0.606140286 2.311142388 378.9850752 546.5827689 375.9032369

2100

woman

65-69 18.31410978 28.31890455 18.34120341 7.742812139 17.00638001 7.350729486
70-74 20.27507935 27.85616321 20.31045671 19.01358912 39.60766901 19.55894203
75-79 23.15662667 25.46644602 23.20267578 28.52396794 60.11393377 29.21300373
80-84 25.91857383 21.27475873 25.97365752 54.10869775 116.2657805 54.59069438
85-89 26.92591626 14.59543869 26.99383163 84.78500571 183.0813626 85.0462021
90-94 28.62034158 8.611135716 28.66836036 112.1805626 242.2494816 112.0832789
95-99 22.76233853 3.322324484 22.79397214 145.3305325 316.4354499 144.6073195

moman

65-69 20.52232908 29.90303274 20.53313996 16.35609072 36.86830448 15.57156012
70-74 22.8039897 28.42177601 22.81888322 34.65388684 67.40945779 36.13256193
75-79 26.02354532 24.55498745 26.04391886 51.95192424 104.0495478 53.38261058
80-84 28.87099494 18.83437085 28.89366536 89.71363392 184.608421 90.79463366
85-89 29.56840036 11.54482415 29.59554526 140.122011 295.1297167 141.2116441
90-94 30.24555027 5.850640011 30.24924365 152.2981587 322.4117007 151.9413353
95-99 22.24445345 1.863520566 22.24227326 160.1987004 342.1414154 158.8586875

Notes: Population data are sourced from the IIASA SSP population datasets (3), measured in millions. And baseline mortality rates are
predicted using the International Futures (IFs) model v7.89 (4), measured in deaths per thousand older adults.



Supplemental Notes
Supplemental Note 1: SSP-RCP scenario framework. The SSP-RCP scenario framework is designed to explore
plausible futures of human activities, emissions, and the changing climate, making it an important tool in climate
change research and climate model predictions. It consists of two main components: SSPs (Shared Socioeconomic
Pathways) and RCPs (Representative Concentration Pathways). The SSPs narrate possible alternative trends in
socioeconomic and environmental development (5). The SSPs are divided into five scenarios as follows: (1) SSP1:
Sustainable Development, emphasizing social equity and environmental sustainability, with a focus on renewable
energy use. (2) SSP2: Continued Development, maintaining existing trends. (3) SSP3: Regional Rivalry, emphasizing
regional competition and social inequality. (4) SSP4: Inequality but High Adaptability, focusing on climate change
adaptation. (5) SSP5: Fossil-fueled Development, emphasizing economic growth and technological innovation. The
distinct differences across the SSPs are driven by the basic SSP elements which are population, urbanization, and GDP
(3). In addition, each RCP represents the warming targets for the emission pathways of energy systems and land use,
as measured as certain radiative forcing levels (in W/m2) by the end of the century (6). The IPCC AR5 report presents
four distinct RCPs (7), including: (1) RCP2.6: A low-emission scenario (8). (2) RCP4.5: A stabilization scenario (9).
(3) RCP6.0: A scenario with climate policy interventions (10). (4) RCP8.5: A scenario without mitigation efforts
(11). These RCPs outline various pathways for understanding and assessing future climate change scenarios. The
integration of SSPs and RCPs is built upon the framework of Shared Climate Policy Assumptions, including the vital
details like the evolution of international climate policies and the overarching goals for long-term climate mitigation.
The common SSP-RCP combinations include SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The aim of this
unified scenario framework is to encompass the fundamental traits of global climate policies that extend until the end
of the century (12).

The SSP-RCP scenario framework has been widely adopted across research communities in scientific assessments
such as CMIP6 (13) and the IPCC AR6 report (14). This study selects three SSP-RCP scenarios (SSP1-2.6, SSP3-7.0,
and SSP5-8.5), which are consistent with the emission scenarios in the IPCC AR6 report (14). The end-of-century
warming levels for these scenarios range from a lower limit of 2.6 W/m2 (approximately 2°C) to an upper limit of 8.5
W/m2 (close to 5°C).



Supplemental Note 2: Validations of the GCM-GHM coupling model simulations. We validate the Tmax, daily mean
air temperature, and daily precipitation simulations from five GCMs and the TWS simulations from ten GCM-GHM
coupling models, as well as the results from the MME means, using Tmax, daily mean air temperature, and daily
precipitation data from Chinese temperature stations for the period 1942-2014 and TWS data from Gravity Recovery
and Climate Experiment (GRACE)-constrained reconstruction and reanalysis data during 2002-2014. We construct
the multi-model ensemble (MME) mean using two ways. The first way takes the simple arithmetic average of the
results from the ten GCM-GHM coupling models. The second way uses Pearson correlation coefficients between each
GCM-GHM coupling model and the validation data as weights to calculate a weighted average.

We obtain daily Tmax, daily mean air temperature, and daily precipitation data by processing 3-hourly temperature
and precipitation records from the ground stations in the Chinese region, captured from the National Climatic Data
Center (NCDC) of the United States. Due to the extended time span of the data and inconsistent data gaps at
different stations, it is a challenge to maintain a complete time series spanning from 1942 to 2014. Consequently, we
take the data in each station as an individual time series for each year. We then conduct Pearson correlation analyses
between the data in this station and the simulated data for the corresponding grid, aiming to validate the accuracy of
the simulated data.

For the validation of the GCM-GHM coupling models TWS, we utilize the surface water anomaly data from the
GRACE satellite, which provides complete time series data with a resolution of 1°×1° spanning from 2002 to 2014.
We perform a bilinear interpolation of the GCM-GHM coupling models TWS to match the 1°×1° resolution and
compute the Pearson correlation coefficient between the interpolated data and the corresponding grid cells of the
GRACE satellite data for validation purposes.

The average of Pearson correlation coefficients between Tmax simulated by individual models and the validation
data are around 0.8 (Supplementary Fig. S2a), and around 0.9 for daily mean air temperature (Supplementary Fig.
S2b), and around 0.6 for daily precipitation (Supplementary Fig. S2c). and around 0.6 for TWS (Supplementary Fig.
S2b). The Pearson correlation coefficients between the MME mean and the validation data indicate a significant
improvement compared to the simulations by individual models (Supplementary Fig. S2a-d).



Supplemental Note 3: Adjust administrative codes of the counties. To protect the privacy of the older adults in
CLHLS, their exact geographic coordinates are obscured, and we can only match each older adult sample with the
CDHW characteristics of their counties of residence. However, between 2005 and 2014, 109 county administrative
codes were changed for various reasons. To address this, we reassigned new administrative codes to the older adult
samples whose codes changed. Specifically, there are four types:

Firstly, there are 16 counties that have been merged with neighboring counties to form new counties due to the
county consolidation policy, and their real geographic locations do not change. For example, in July 2010, the Chinese
State Council approved the revocation of Xicheng District (110102) and Xuanwu District (110104) in Beijing, and
established a new Xicheng District (110102). We replace the older administrative codes with the new ones of the
merged counties.

Secondly, there are 85 counties that have formed new counties due to policies such as "abolishing counties and
establishing districts", "abolishing cities and establishing districts", "abolishing districts and establishing counties",
"abolishing districts and establishing cities", and "adjusting administrative regions". The administrative regions of
these counties do not change significantly or at all. For example, in April 2015, the Chinese State Council approved
the abolishment of Xushui County (130625) and the establishment of Xushui District (110102). We replace the
original administrative codes of these counties with the new ones after the adjustment.

Thirdly, there are 7 counties where administrative codes were recorded incorrectly during the survey, leading to the
inability to match CDHW characteristics. We have corrected the erroneous county codes, such as recording Hetang
District (430202) as Hetang District (430220).

Fourthly, there is one county that has been split into multiple counties. For example, the Daxing’anling area
(232700) was split into Mohe City (232701), Tahe County, and Huma County. We replaced the original county code
with the code of the county with the largest area after the split.



Supplemental Note 4: Control variables. In the baseline Cox proportional hazards model, we include 9 survey
indicators as control variables to enhance the description of the model and reduce the interference of confounders.
These indicators are comprised of sex, age, smoking status, drinking status, physical activity, body-mass index (BMI),
household income, marital status, and education. Among them, sex is a binary categorical variable, where 0 represents
females and 1 represents males. Age is a continuous variable obtained by subtracting the older adults’ birth date
from their survey or death date. Smoking status, drinking status, and physical activity are individually divided into
four levels from low to high, namely, "1: never smoked, drank and exercised", "2: currently smoke, drink and exercise",
"3: smoked, drank and exercised in the past", "4: always smoke, drink and exercise". BMI is calculated using height
and weight. Weight is a continuous variable, and samples with weights below 20 kg or above 200 kg are excluded due
to possible data errors. Height is a continuous variable similar to weight, and samples with height below 55 cm or
above 200 cm are excluded. Household income is household per capita annual income, which is a continuous variable
that reflects the economic status of the older adult family. Marital status includes "1-currently married, living with
spouse", "2-separated", "3-divorced", "4-widowed" and "5-never married". Education is the years of education of the
older adult samples.

In the robustness tests, we also include other control variables containing urban-rural residence, counties of the
older adults, and the diseases suffered from CLHLS older adult samples. Among them, the urban-rural attribute is a
binary categorical variable, i.e. 0 indicating living in rural areas and 1 indicating living in urban areas. The diseases
include hypertension, diabetes, heart disease, stroke and cerebrovascular disease, bronchitis/emphysema/pneumonia
and asthma, tuberculosis, cataracts, glaucoma, cancer, gastrointestinal ulcers, Parkinson’s disease, pressure ulcers,
arthritis, and dementia. All of the above diseases are binary variables, i.e. 0 indicating the absence of the disease,
and 1 indicating the presence of the disease.



Supplemental Note 5: Droughts indices. We use three different drought indices in this study: (1) the terrestrial water
storage-based drought severity index (TWS-DSI) to identify terrestrial terrestrial water storage deficits (15), (2) the
standardized precipitation index (SPI) to identify precipitation deficits (16), and (3) the standardized precipitation-
evapotranspiration index (SPEI) to capture the combined effects of precipitation and evaporative demand on regional
water availability (17).

TWS-DSI can capture changes in vertically integrated water storage and is used to identify terrestrial drought
conditions (15). A negative TWS-DSI means that the TWS is lower than the average level during the study period.
It is used to represent the drought magnitude. The TWS-DSI is calculated by using Eq. [1].

TWS − DSIi,j = (TWSi,j − TWSj)/σj [1]

where TWSi,j refers to the TWS anomalies at year i and month j. and denote the mean value and standard deviation
of TWS anomalies at month j. For the GCM-GHM TWS outputs, we determine the same time-mean baseline as the
GRACE data, and thus obtain monthly TWS anomalies during 1941-2100 by subtracting the mean value of TWS
for 2004–2009. In calculating the mean and standard deviation of TWS for any specified period, we use a common
reference period (that is, 1941–2014) to ensure robust comparison of drought events across time periods.

To calculate the 6-month SPI, we fit a gamma distribution to the 6-month cumulative precipitation time series
over the 1941-2014 calibration period for each spatial grid cell. Subsequently, the cumulative precipitation value for
each month is assigned a probability of occurrence based on the gamma distribution specific to that grid cell. These
probabilities are then transformed onto the standard normal distribution (with zero mean and unit variance) to derive
SPI values (i.e., z-scores). For SPEI, we estimate potential evapotranspiration using the Thornthwaite equation (18),
and repeat this process using precipitation minus potential evapotranspiration to compute SPEI. Similar to TWS-DSI,
future SPI/SPEI values (2015-2100) are also calculated using the historical (1941-2014) gamma distributions. The
calculations of SPI/SPEI were conducted using the Python climate indices module (19), modified by Deeksha Rastogi
et al. (20), enabling SPI/SPEI calculations for future periods based on historical calibration.



Supplemental Note 6: Decomposing the drivers of CDHW-attributable deaths. We dissect the contributions of driving
factors including: (1) effect of population size, (2) effect of change in age structure (that is, population ageing),
(3) effect of changes in CDHW exposures, and (4) effect of mortality rates independent of exposure to CDHWs
(that is, the change in the baseline mortality rate due to changes in access to healthcare, treatment and other risk
factors), to the change in attributable deaths to CDHWs using the decomposition method (21). Population and age
structure data are sourced from the IIASA SSP population datasets (3), baseline mortality rates are predicted using
the International Futures (IFs) model v7.89 (4), and CDHW characteristics are derived from the predictions of the
GCM-GHM coupling model used in this study.

This approach estimate the contribution of different factors by sequentially introducing each factor into the AN
equation. The difference between each consecutive step provided an estimate of the relative contribution of each
factor. For example:

ANt0 =
99∑

a=65
Pt0 × Aget0,a × y0

t0,a × AFt0 [2]

At =
99∑

a=65
Pt × Aget0,a × y0

t0,a × AFt0 [3]

Bt =
99∑

a=65
Pt × Aget,a × y0

t0,a × AFt0 [4]

Ct =
99∑

a=65
Pt × Aget,a × y0

t,a × AFt0 [5]

Dt =
99∑

a=65
Pt × Aget,a × y0

t,a × AFt [6]

where ANt0 is the attributable deaths in the baseline period t0, which are calculated based on the factors in the
baseline period. At, Bt and Ct are the intermediate variables, which consider the changes in population, age structure,
and baseline mortality rate incrementally from the baseline period to target period. Dt is the attributable deaths
in the target period, which consider all the changes in four factors. Using Eqs. [2]-[6], we calculate the percent
contribution of each factor as follows.

1)Population size effect (%) = (At-ANt0)/ANt0.
2)Population ageing effect (%) = (Bt-At)/ANt0.
3)Baseline mortality rate change effect (%) = (Ct-Bt)/ANt0.
4)Exposure change effect (%) = (Dt-Ct)/ANt0.
5)Total change (%) = (Dt-ANt0)/ANt0.
Notably, the order in which each factor is included can influence the results. That is to say, if the sequence of adding

factors is not considered, a large bias may occur. Thus, we estimate the results under all sequence permutations (a
total of 24 possible sequences) of the four factors. The final estimation of contributions from different factors is the
average of the results for all sequences.
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